Advertisement

Hemoglobin Interaction in Sickle Cell Fibers: Theoretical Approaches to the Molecular Contacts

  • Shoshana J. Wodak
  • Peter Kahn
  • Artem K. Dadivanian
  • Cyrus Levinthal
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 8)

Abstract

Sickle cell anemia was first described as a molecular disease by Pauling in 1949 [1] on the basis of the altered electrophoretic mobility of hemoglobin taken from the blood of patients with clinical symptoms. Since then many additional observations have been made on various aspects of the disease [2]. One of the most important is that deoxygenated sickle cell hemoglobin (Hb-S) can aggregate to form well-ordered fibers or microtubules which are seen either within sickled red cells or in gels formed from concentrated, cell-free hemoglobin solutions. The basic geometry of these fibers is known [3, 4], and it seems clear that they are responsible for the distortion, rigidity, and reduced life span of the red cells. However, even though the precise chemical alteration produced by the mutation is known [5], there is still no understanding as to why the replacement of glutamic acid by valine at the sixth position in the β chain causes the aggregation.

Keywords

Contact Zone Salt Bridge Contact Region Fiber Axis Intermolecular Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pauling, L., Itano, H. A., Singer, S. J., and Wells, I. C: Science 110, 543–548 (1949).CrossRefGoogle Scholar
  2. 2.
    Abstracts of the First National Symposium on Sickle Cell Disease, Washington D.C. (1974).Google Scholar
  3. 3.
    Magdoff-Fairchild, B. and Swerdlow, P.: Nature 239, 217–219 (1972).CrossRefGoogle Scholar
  4. 4.
    Finch, J. T., Perutz, M. F., Bertles, J. F., and Dobler, J.: Proc. Nat. Acad. Sci. U.S.A. 70, 718–722 (1973).CrossRefGoogle Scholar
  5. 5.
    Ingram, V. M.: Biochim. Biophys. Ada 36, 402–11 (1959).CrossRefGoogle Scholar
  6. 6.
    Bolton, W. and Perutz, M. F.: Nature 228, 551–552 (1970).CrossRefGoogle Scholar
  7. 7.
    Wishner, B. C.: Ph. D. Dissertation, Johns Hopkins University, 1974.Google Scholar
  8. 8.
    Perutz, M. F., Liquori, A. M., and Eirich, F.: Nature 167, 929–931 (1951).CrossRefGoogle Scholar
  9. 9.
    Caspar, D. L. D. and Klug, A.: Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962).Google Scholar
  10. 10.
    Murayama, M.: J. Biol. Chem. 228, 231–241 (1957).Google Scholar
  11. 11.
    Hofrichter, J., Hendricker, D. G., and Eaton, W. A.: Proc. Nat. Acad. Sci. U.S.A. 70, 3604–3608 (1973).CrossRefGoogle Scholar
  12. 12.
    Crane, H. R.: Sci. Mon. 376–389 (1950).Google Scholar
  13. 13.
    Katz, L. and Levinthal, C: Ann. Rev, Biophys. Bioeng. 1, 465–536 (1972).CrossRefGoogle Scholar
  14. 14.
    Wetlaufer, D. B.: Proc. Nat. Acad. Sci. U.S.A. 70, 691–701 (1973).CrossRefGoogle Scholar
  15. 15.
    Bookchin, R. M., Nagel, R. L., and Ranney, H. M.: Biochim. Biophys. Acta 221, 373–375 (1970).Google Scholar
  16. 16.
    Lee, B. and Richards, F. M.: J.M.B. 55, 379–400 (1971).CrossRefGoogle Scholar
  17. 17.
    Hofrichter, J., Ross, P. D., and Eaton, W. A.: Proc. Nat. Acad. Sci. U.S.A., in press (1975).Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1976

Authors and Affiliations

  • Shoshana J. Wodak
    • 1
    • 2
  • Peter Kahn
    • 1
  • Artem K. Dadivanian
    • 1
  • Cyrus Levinthal
    • 1
  1. 1.Dept. of Biological SciencesColumbia UniversityNew YorkUSA
  2. 2.Laboratoires de Chimie BiologiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations