Advertisement

Molecular Orbital ‘Supermolecule’ Approach to the Solvation Problem

  • Alberte Pullman
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 8)

Abstract

Until very recently, the theoretical evaluation of the effect of the medium on the behavior and properties of molecules was beyond the reach of quantum mechanical computations, essentially due to the prohibitive size of the systems which would have to be considered. Thus the habit evolved to treat essentially the isolated molecule and be satisfied by qualitative considerations or, at best, approximate evaluations of the bulk effect of the medium following early models [l]–[3]. The last few years have seen a number of attempts at a refinement of these ‘continuum’ or ‘macroscopic’ representations [4,5,6,7]. One constant and essential inconvenience of these models is, however, the absence of precision concerning the arrangement of the solvation layer(s) around the solute, which is considered as residing in a cavity (generally spherical) embedded in a polarizable dielectric. No information is obtainable in this way about the details of the short-range solute-medium interactions.

Keywords

Water Molecule Kcal Mole Torsion Angle Hydration Shell Solvation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, M.: Z. Phys. 1, 45 (1920).CrossRefGoogle Scholar
  2. 2.
    Kirkwood, J. G.: J. Chem. Phys. 2, 351 (1934).CrossRefGoogle Scholar
  3. 3.
    Onsager, L.: J. Am. Chem. Soc. 58, 1486 (1936).CrossRefGoogle Scholar
  4. 4.
    Sinanoglu, O.: in R. Daudel and B. Pullman (eds.), The World of Quantum Chemistry, Proc. of the 1st Intern. Congress of Quant. Chem., Reidel, Dordrecht, 1974, p. 265.Google Scholar
  5. 5.
    Hopfinger, A. J.: Conformational Properties of Macromolecules, Acad. Press, New York, 1973.Google Scholar
  6. 6.
    Beveridge, D. L., Radna, R. J., Schnuelle, G. W. S., and Kelly, M. M.: in E. D. Bergmann and B. Pullman (eds.), Molecular and Quantum Pharmacology, 7th Jerusalem Symposium, Reidel, Dordrecht, 1975, p. 153.Google Scholar
  7. 7.
    Hylton, J., Christoffersen, R. E., and Hall, G.: Chem. Phys. Letters 24, 51 (1974).CrossRefGoogle Scholar
  8. 8.
    Alagona, G., Pullman, A., Scrocco, E., and Tomasi, J.: Int. J. of Peptide and Protein Research 5, 251 (1973).CrossRefGoogle Scholar
  9. 9.
    Pullman, A., Alagona, G., and Tomasi, J.: Theoret. Chim. Acta 33, 87 (1974).CrossRefGoogle Scholar
  10. 10.
    Pullman, A. and Port, G. N. J.: Compt. Rend. Acad. Sci. 277C, 2269 (1973).Google Scholar
  11. 11.
    Port, G. N. J. and Pullman, A.: Int. J. Quant. Chem., Quant. Biol. Symp. 1, 21 (1974).Google Scholar
  12. 12.
    Port, G. N. J. and Pullman, A.: FEBS Letters 31, 70 (1973).CrossRefGoogle Scholar
  13. 13.
    Port, G. N. J. and Pullman, A.: Theoret. Chim. Acta 31, 231 (1973).CrossRefGoogle Scholar
  14. 14.
    Pullman, A. and Armbruster, A. M.: Int. J. Quant. Chem. S8, 169 (1974).Google Scholar
  15. 15.
    Pullman, B. and Port, G. N. J.: Mol. Pharmac. 10, 360 (1974).Google Scholar
  16. 16.
    Pullman, B., Courrière, Ph., and Berthod, H.: Mol. Pharmac. 11, 268 (1975).Google Scholar
  17. 17.
    Pullman, B., Courrière, Ph., and Berthod, H.: J. Med. Chem. 17, 439 (1974).CrossRefGoogle Scholar
  18. 18.
    Pullman, B., Berthod, H., and Courrière, Ph.: Intern. J. Quant. Chem., Quant. Biol. Symp. 1, 93 (1974).Google Scholar
  19. 19.
    Pullman, B., Coubeils, J. L., Courrière, Ph., and Gervois, J. P.: J. Med. Chem. 15, 17 (1972).CrossRefGoogle Scholar
  20. 20.
    Pullman, B.: Adv. Quantum Chem., in press.Google Scholar
  21. 21.
    Pullman, A. and Pullman, B.: Quart. Rev. Biophys. 7, 505 (1975).CrossRefGoogle Scholar
  22. 22.
    Hehre, W. G., Ditchfield, R., Stewart, R. F., and Pople, J. A.: J. Chem. Phys. 52, 2769 (1970).CrossRefGoogle Scholar
  23. 23.
    Hehre, W. G., Lathan, W. A., Ditchfield, R., Newton, M. D., and Pople, J. A.: Q.C.P.E. Program, No. 236.Google Scholar
  24. 24.
    Port, G. N. J. and Baudet, J.: Gauss 105, Institut de Biologie Physico-Chimique Paris, 1973.Google Scholar
  25. 25.
    Perricaudet, M. and Pullman, A.: FEBS Letters 34, 222 (1973).CrossRefGoogle Scholar
  26. 26.
    Pullman, A.: Int. J. of Quant. Chem., Quantum Biology Symposium 1, 33 (1974).Google Scholar
  27. 27.
    Newton, M. D.: J. Am. Chem. Soc. 95, 256 (1973).CrossRefGoogle Scholar
  28. 28.
    Perahia, D., Pullman, B., and Saran, A.: Biochim. Biophys. Acta 340, 299 (1974).Google Scholar
  29. 29.
    M. Sundaralingam: Biopolymers 7, 821 (1969).CrossRefGoogle Scholar
  30. 30.
    Pullman, B. and Saran, A.: Progress in Nucleic Acid Research and Mol. Biol., in press.Google Scholar
  31. 31.
    Pullman, B. and Saran, A.: Intern. J. Quant. Chem., Quant. Biol. Symp. 2, in press.Google Scholar
  32. 32.
    Pullman, A. and Berthod, H.: Chem. Phys. Letters 32, 233 (1975).CrossRefGoogle Scholar
  33. 33.
    Klose, G. and Stelzner, F.: Biochim. Biophys. Acta 363, 1 (1974).CrossRefGoogle Scholar
  34. 34.
    Jendrasiak, G. L. and Hasty, J. H.: Biochim. Biophys. Acta 348, 45 (1974).Google Scholar
  35. 35.
    Jendrasiak, G. L. and Hasty, J. H.: Biochim. Biophys. Acta 337, 79 (1974).Google Scholar
  36. 36.
    Walter, W. V. and Hayes, R. G.: Biochim. Biophys. Acta 294, 528 (1971).Google Scholar
  37. 37.
    Chapman, D.: Annals New York Acad. Sci. 195, 179 (1972).CrossRefGoogle Scholar
  38. 38.
    Phillips, M. C., Finer, E. G., and Hauser, H.: Biochim. Biophys. Acta 290, 397 (1972).CrossRefGoogle Scholar
  39. 39.
    Veksli, Z., Salsburg, N. J., and Chapman, D.: Biochim. Biophys. Acta 183, 434 (1969).CrossRefGoogle Scholar
  40. 40.
    Misiorowski, R. L. and Wells, M. A.: Biochemistry 12, 967 (1973).CrossRefGoogle Scholar
  41. 41.
    Henrikson, K.: Biochim. Biophys. Acta 203, 228 (1970).CrossRefGoogle Scholar
  42. 42.
    Falk, M., Hartman, Jr., K. A., and Lord, R. C.: J. Am. Chem. Soc. 85, 387 (1963).CrossRefGoogle Scholar
  43. 43.
    Hartman, K. A., Lord, R. C., and Thomas, G. J.: in J. Duchesne (ed.), Physical-Chemical Properties of Nucleic Acids, Academic Press, New York, Vol. 2, 1973, p. 1.Google Scholar
  44. 44.
    Smith, I. C. P., Mantsch, H. H., Lapper, R. D., Deslauriers, R., and Scheich, T.: in E. D. Bergmann and B. Pullman (eds.), Conformation of Biological Molecules and Polymers, 5th Jerusalem Symposium on Quantum Chemistry and Biochemistry, New York, Academic Press, 1973, p. 381.Google Scholar
  45. 45.
    Mantsch, H. H. and Smith, I. C. P.: Biochem. Biophys. Res. Comm. 46, 808 (1972).CrossRefGoogle Scholar
  46. 46.
    Kotowycz, G. and Hayamizu, K.: Biochemistry, N.Y. 13, 517 (1973).CrossRefGoogle Scholar
  47. 47.
    Giessner-Prettre, C. and Pullman, B.: J. Theoret. Biol 48, 425 (1974).CrossRefGoogle Scholar
  48. 48.
    Rubin, J., Brennan, T., and Sundaralingam, M.: Science 174, 1020 (1971).CrossRefGoogle Scholar
  49. 49.
    Shefter, E., Barlow, M., Sparke, R. A., and Trueblood, K. N.: Acta Cryst. B25, 895 (1969).Google Scholar
  50. 50.
    Pullman, A., Berthod, H., and Gresh, N.: Chem. Phys. Letters 33, 11 (1975).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1976

Authors and Affiliations

  • Alberte Pullman
    • 1
  1. 1.Laboratoire de Biochimie Théorique, Institut de Biologie Physico-ChimiqueC.N.R.S.ParisFrance

Personalised recommendations