Skip to main content

Physical Theories of Biological Co-Ordination

  • Chapter
Topics in the Philosophy of Biology

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 27))

Abstract

Biological organization is manifestly different from the order of the nonliving world, and the study of biology is largely a search for the nature of this difference. The perspective and style with which we see this difference has changed in many respects as our knowledge of living systems has grown. Today, following the molecular biological revolution, we commonly find the opinion that there is no real problem left. This attitude was recently expressed by Delbrück (1970) in his Nobel Lecture: “Molecular genetics, our latest wonder, has taught us to spell out the connectivity of the tree of life in such palpable detail that we may say in plain words, ‘This riddle of life has been solved’.” Many prominent molecular biologists have expressed similar views (Watson, 1965; Crick, 1966; Kendrew, 1967; Stent, 1968).

The more constraints one imposes, the more one frees one’s self of the chains that shackle the spirit... and the arbitrariness of the constraint serves only to obtain precision of execution. Igor Stravinsky, Poetics of Music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ballantine, L. E.: 1970, ‘The Statistical Interpretation of Quantum Mechanics’, Rev. Mod. Phys. 42, 358.

    Article  Google Scholar 

  • Bellman, R. and Kalaba, R.: 1964, Selected Papers on Mathematical Trends in Control Theory, New York: Dover Publications.

    Google Scholar 

  • Bénard, H.: 1901, ‘Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur en régime permanent’, Ann. chim. Phys. (7e série) 23, 62.

    Google Scholar 

  • Born, M.: 1964, Natural Philosophy of Cause and Chance, New York: Dover, p. 47.

    Google Scholar 

  • Burgers, J. M.: 1963, ‘On the Emergence of Patterns of Order’, Bull. Am. math. Soc. 69, 1.

    Article  Google Scholar 

  • Caskey, C. T.: 1970, ‘The Universal RNA Genetic Code’, Q. Rev. Biophys. 3, 295.

    Article  Google Scholar 

  • Chandra, K.: 1938, ‘Instability of Fluids Heated from below’, Proc. R. Soc. A164, 231.

    Google Scholar 

  • Crick, F. H. C.: 1958, ‘The Origin of the Genetic Code’, J. Molec. Biol. 38, 367.

    Article  Google Scholar 

  • Crick, F. H. C.: 1968, Of Molecules and Man, Seattle: University of Washington Press.

    Google Scholar 

  • Delbrück, M.: 1970, ‘A Physicist’s Renewed Look at Biology: Twenty Years Latei’, Science, NY. 168, 1312.

    Article  Google Scholar 

  • Golden, S.: 1969, Quantum Statistical Foundations of Chemical Kinetics, Oxford University Press.

    Google Scholar 

  • Haldane, J. B. S.: 1965, ‘Data Needed for a Blueprint of the First Organism’, The Origins of Prebiological Systems (éd. S. Fox), New York: Academic Press, p. 11.

    Google Scholar 

  • Harris, Z.: 1968, Mathematical Structures of Language, New York: Interscience (John Wiley).

    Google Scholar 

  • Jukes, T. H.: 1966, Molecules and Evolution, New York: Columbia Univ. Press.

    Google Scholar 

  • Kendrew, J. C.: 1967, Review of Phage and Origins of Molecular Biology (ed. J. Cairns, G. Stent and J. Watson), Cold Springs Harbor Laboratory of Quantitative Biol. Scient. Am. 216, 141.

    Google Scholar 

  • Lanczos, C.: 1949, The Variational Principles of Mechanics, Toronto: University of Toronto Press.

    Google Scholar 

  • Levins, R.: 1971, ‘The Limits of Complexity’, Biological Hierarchies’. Their Origin and Dynamics (ed. H. Pattee), New York: Gordon and Breach.

    Google Scholar 

  • Lewontin, R. C.: 1969, ‘The Meaning of Stability’, Diversity and Stability in Ecological Systems, Brookhaven Symposia on Biology, no. 22, New York.

    Google Scholar 

  • Maxwell, J. C.: 1868, ‘On Governor’s, Proc. R. Soc. 16, 270.

    Article  Google Scholar 

  • Michie, D.: 1970, ‘Future for Integrated Cognitive Systems’, Nature 228, 717.

    Article  Google Scholar 

  • Morowitz, H. J.: 1968, Energy Flow in Biology, New York and London: Academic Press.

    Google Scholar 

  • Orgel, L. E.: 1968, ‘Evolution of the Genetic Apparatus’, J. Molec. Biol. 38, 381.

    Article  Google Scholar 

  • Pattee, H. H.: 1967, ‘Quantum Mechanics, Heredity and the Origin of Life’, J. Theoret. Biol., 17, 410.

    Article  Google Scholar 

  • Pattee, H. H.: 1969, ‘Now Does a Molecule Become a Message?’ Devl Biol., Suppl.3, 1.

    Google Scholar 

  • Pattee, H. H.: 1970, ‘The Problem of Biological Hierarchy’, Towards a Theoretical Biology, vol. 3 (ed. C. H. Waddington), Edinburgh University Press, p. 117.

    Google Scholar 

  • Pattee, H. H.: 1971a, ‘Can Life Explain Quantum Mechanics?’, Quantum Theory and Beyond (ed. T. Bastin), Cambridge University Press, p. 307.

    Google Scholar 

  • Pattee, H.H.: 1971b, ‘The Physical Basis and Limits of Hierarchical Control’, in Biological Hierarchies’. Their Origin and Dynamics (éd. H. H. Pattee), New York: Gordon and Breach, p. 161.

    Google Scholar 

  • Pattee, H. H.: 1971c, ‘The Nature of Hierarchical Controls in Living Matter’, Textbook of Mathematical Biology (ed. R. Rosen), New York: Academic Press.

    Google Scholar 

  • Pattee, H.H.: 1971d, ‘The Recognition of Description and Function in Chemical Reaction Networks’, Chemical Evolution and the Origin of Life (ed. R. Buvet and C. Ponnamperuma), Amsterdam: North-Holland.

    Google Scholar 

  • Platt, J. R.: 1961, ‘Properties of Large Molecules that Go Beyond the Properties of Their Chemical Sub-Groups’, J. Theoret. Biol. 1, 342.

    Article  Google Scholar 

  • Poincaré, H.: 1957. Méthodes nouvelles de la mécanique céleste, New York: Dover Publications.

    Google Scholar 

  • Prigogine, L, Lefever, R., Goldbetter, A., and Herschkowitz-Kauffman, M.: 1969, ‘Symmetry Breaking Instabilities in Biological Systems’, Nature 223, 913.

    Article  Google Scholar 

  • Sherrington, C.: 1953, Man On His Nature (2nd ed.), New York: Doubleday Anchor Books, p. 80.

    Google Scholar 

  • Stent, G.: 1968, ‘That Was the Molecular Biology that Was’, Science 160, 390.

    Article  Google Scholar 

  • Thorn, R.: 1968, ‘Une théorie dynamique de la morphogenèse’, in Towards a Theoretical Biology, vol. 1 (ed. C. H. Waddington), Edinburgh University Press, p. 152.

    Google Scholar 

  • Thorn, R.: 1970, ‘Topological Models in Biology’, Towards a Theoretical Biology, vol. 3 (ed. C. H. Waddington), Edinburgh University Press, p. 88.

    Google Scholar 

  • Turing, A. M.: 1952, ‘The Chemical Basis of Morphogenesis’, Phil. Trans. R. Soc. B 237, 37.

    Google Scholar 

  • Watson, J. D.: 1965, The Molecular Biology of the Gene, New York: Benjamin, p. 47.

    Google Scholar 

  • Whittaker, E. T.: 1944, A Treatise on the Analytical Dynamics of Particles and Rigid odies, New York: Dover Publications.

    Google Scholar 

  • Wigner, E. P.: 1967, Symmetries and Reflections, Bloomington and London: Indiana University Press, p. 167.

    Google Scholar 

  • Woese, C. R.: 1967, The Genetic Code, New York: Harper and Row.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Pattee, H.H. (1976). Physical Theories of Biological Co-Ordination. In: Topics in the Philosophy of Biology. Boston Studies in the Philosophy of Science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1829-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1829-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0596-9

  • Online ISBN: 978-94-010-1829-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics