Skip to main content

Auroral Ultraviolet Emissions

  • Conference paper

Part of the book series: Space Science Library ((ASSL,volume 51))

Abstract

The identification of most of the important features of the UV spectrum has progressed simultaneously with the development of sensitive rocket-borne and satellite-borne UV spectrometers. It may be considered, at the present time, that our knowledge of the auroral spectrum above 1200 Å is satisfactory as far as identification of important transitions is concerned. Unfortunately, the spectral range covered by such measurements has often been very limited, thus preventing accurate comparisons to be made of intensities of features spread over the whole spectrum. As far as theory is concerned, a great deal of effort has been devoted to the prediction of UV emission intensities (Green and Barth, 1965; Stolarski and Green, 1967). The calculations were generally performed for a range of electron energies and comparison was made with available observational results. Ambiguities remain in the interpretation to be given to the discrepancies which may be due either to the use of inappropriate cross sections or excitation mechanisms, or to large differences between real physical conditions existing at the time of the observation. For the first time, Sharp and Rees (1972) combined satellite-borne and airborne equipment to observe simultaneously the same spot of aurora in the range 1200 to 4000 Å. Below 1200 Å, the presence of strong emissions has been detected photometrically by Landensperger (1971) and Paresce et al. (1972) but the spectral distribution is still unknown. Most of the excitation of UV emission is direct e.g., resulting from impact of primary and secondary electrons on ground state species. This makes interpretation of intensities often easier than in the case of visible emissions. However, radiation trapping complicates analysis of OI λ1304 Å and NI λ1200 Å altitude distribution. This paper reviews the present knowledge on excitation processes and related intensity of the UV auroral emissions. It will also report on new results concerning N2A3Σu + deactivation as determined by the V-K bands altitude profile. Finally, UV photometric data obtained recently with the ESRO TD-1 satellite concerning early evening polar cap aurora will be reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Gérard, JC. (1975). Auroral Ultraviolet Emissions. In: McCormac, B.M. (eds) Atmospheres of Earth and the Planets. Space Science Library, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1799-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1799-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1801-2

  • Online ISBN: 978-94-010-1799-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics