The Global Pattern of 6300 Å Atomic Oxygen Emission as Seen from the Isis-2 Spacecraft

  • G. G. Shepherd
Conference paper
Part of the Space Science Library book series (ASSL, volume 51)


The 6300 Å line of O is a useful detector of low energy ionospheric processes. The 100 eV magnetosheath-type electrons incident in the dayside cleft produce red auroras, and red-enhanced auroras appear as polar cap arcs and at high latitudes on the nightside. During storms, thermal excitation inside the plasmapause generates SAR Arcs. Outside the plasmapause conjugate photoelectrons produce significant increases of 6300 Å emission by electron impact. Dissociative recombination of O2 + produces 6300 Å emission, dramatically evident at the equator. All of these mechanisms are identifiable in the ‘instantaneous’ global maps produced by the Red Line Photometer (Shepherd et al., 1973a) on the ISIS-2 spacecraft. The Auroral Scanning Photometer (Anger et al., 1973) also yields data at 5577 Å and 3914 Å. Parameters measured in the circular orbit at 1400 km include (Shepherd et al., 1973b) electron density and temperature, ion composition and temperature, and energy spectra of electrons and protons; while the electron density profile down to the ionosphere is traced by the topside sounder.


Total Electron Content Geographic Latitude Auroral Oval Electron Density Profile Dissociative Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasofu, S.-I.: 1972, J.Geophys. Res. 77, 2303.ADSCrossRefGoogle Scholar
  2. Anger, C. D.: 1974, private communication.Google Scholar
  3. Anger, C. D., Fancott, T., McNally, J., and Kerr, H. S.: 1973, Appl. Opt. 12, 1753.ADSCrossRefGoogle Scholar
  4. Eather, R. H. and Mende, S. B.: 1971, J. Geophys. Res. 76, 1746.ADSCrossRefGoogle Scholar
  5. Feldstein, Y. L.: 1966, Planetary Space Sci. 14, 121.ADSCrossRefGoogle Scholar
  6. Heikkila, W. J., Winningham, J. D., Eather, R. H., and Akasofu, S.-I.: 1972, J.Geophys. Res. 77, 4100.ADSCrossRefGoogle Scholar
  7. Lassen, K.: 1972, Geofys. Publ. 29, 87.Google Scholar
  8. Lui, A. T. Y. and Anger, C. D.: 1973, Planetary Space Sci. 21, 799.ADSCrossRefGoogle Scholar
  9. Reed, E. I., Fowler, W. B., and Blamont, J. E.: 1973, J.Geophys. Res. 78, 5658.ADSCrossRefGoogle Scholar
  10. Shepherd, G. G. and Thirkettle, F. W.: 1973, Science 180, 737.ADSCrossRefGoogle Scholar
  11. Shepherd, G. G., Fancott, T., McNally, J., and Kerr, H. S.: 1973a, Appl. Opt. 12, 1767.ADSCrossRefGoogle Scholar
  12. Shepherd, G. G., Anger, C. D., Brace, L. H., Burrows, J. R., Heikkila, W. J., Hoffman, J., Maier, E. J., and Whitteker, J. H.: 1973b, Planetary Space Sci. 21, 819.ADSCrossRefGoogle Scholar
  13. Shepherd, G. G., Brace, L. H., and Whitteker, J. H.: 1973c, J. Geophys. Res. 78, 4689.ADSCrossRefGoogle Scholar
  14. Whalen, J. A. and Pike, C. P.: 1973, J.Geophys. Res. 78, 3848.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1975

Authors and Affiliations

  • G. G. Shepherd
    • 1
  1. 1.Centre for Research in Experimental Space ScienceYork UniversityCanada

Personalised recommendations