Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 48))

Abstract

Supernovae are the explosion of a star. This awesome and exciting realization came about at the turn of the century from the following sequence of observations. The sudden flaring up of a star had been recognized many times by astronomers and had been called a nova, but then the pioneering work of Hubble indicated that galaxies or associations of stars of hundreds of billions at a time, called galaxies, populated our Universe. When a star brightens up in a distant galaxy to a luminosity that is comparable to all the stars in the galaxy, then this phenomenon came to be called a supernova. The color temperature of these objects and the fact that the light curve rose to maximum in something like a week are sufficient alone to deduce that something like a solar mass of matter must have expanded at a velocity corresponding to energies of several MeV nucleon-1 and therefore represented a kinetic energy greater than any binding energy of stars then known. Since the violence of the explosion is so great, it was natural to consider exotic mechanisms for its origin. Fritz Zwicky in his pioneering work on supernovae even made the wild suggestion that the formation of a neutron star could be the source of the energy and indeed I believe he was correct because now we have seen neutron stars (pulsars) at the center of the remnants of supernovae — the Crab and the Vela. In the past, astrophysicists had to grasp almost at science-fiction to find an explanation for supernovae, but now it appears feasible to transport the energy released in the binding of a neutron star to the outer layers of the imploding star by an extraordinarily large neutrino flux, thereby pushing and ejecting the outer layers. Conversely, it is equally plausible that most stars evolving to a carbon-oxygen core will thermonuclearly detonate and destroy themselves. The neutrino transport theory of supernovae has recently been bolstered by the new theoretical considerations concerning the weak interaction force and how this relates to resonant neutrino scattering off larger nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lundmark, K.: Svenska Vetenkapsakad Handlingar 60, No. 8 (1920).

    Google Scholar 

  2. Zwicky, F.: Astrophys. J. 88, 529 (1938).

    Article  ADS  Google Scholar 

  3. Zwicky, F.: Astrophys. J. 96, 28 (1942).

    Article  ADS  Google Scholar 

  4. Zwicky, F.: Handbuch der Physik 51, 776 (1958).

    ADS  Google Scholar 

  5. Minkowski, R.: Astrophys. J. 89, 156 (1939).

    Article  ADS  MATH  Google Scholar 

  6. Colgate, S. A. and McKee, C.: Astrophys. J. 157, 623 (1969).

    Article  ADS  Google Scholar 

  7. Minkowski, R. L.: Stars and Stellar Systems 7, Chapter 11.

    Google Scholar 

  8. Kirshner, R. P., Oke, K. B., Penston, M. V., and Searle, L.: Astrophys. J. 185, 303 (1973).

    Article  ADS  Google Scholar 

  9. Moore, E. P.: Astron. Soc. Pacific 85, 564 (1973).

    Article  ADS  Google Scholar 

  10. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939.

    Google Scholar 

  11. Whelan, J. and Iben, I.: Astrophys. J. 186, 1007 (1973).

    Article  ADS  Google Scholar 

  12. Cameron, A. G. W.: ‘Hot Vibrating White Dwarf Models of Pulsating X-ray Sources’, Harvard College and Smithsonian Observatory. Submitted to Astrophys. Space Sci.

    Google Scholar 

  13. Burbidge, C. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F.: Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  14. Colgate, S. A. and White, R. H.: Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  15. Gamow, G.: Atomic Nuclei and Nuclear Transformations, Oxford, 1936.

    Google Scholar 

  16. Oppenheimer, J. R. and Volkoff, G. M.: Phys. Rev. 55, 374 (1939).

    Article  ADS  MATH  Google Scholar 

  17. Baade, W. and Zwicky, F.: Phys. Rev. 45, 138 (1934).

    Google Scholar 

  18. Arnett, W. D.: Can. J. Phys. 45, 1621 (1967).

    Article  ADS  Google Scholar 

  19. Wilson, J. R.: Astrophys. J. 163, 209 (1971).

    Article  ADS  Google Scholar 

  20. Schwartz, R. A.: Ann. Phys. 43, 42 (1967).

    Article  ADS  Google Scholar 

  21. Weinberg, S.: Phys. Rev. Letters 27, 1688 (1971).

    Article  ADS  Google Scholar 

  22. Freedman, D. Z.: National Accelerator Laboratory, Pub-73/76-THY, Batavia, Illinois. 1973.

    Google Scholar 

  23. Wilson, J. R.: Phys. Rev. Letters 32, 849 (1974).

    Article  ADS  Google Scholar 

  24. Hoyle, F. and Fowler, W. A.: Astrophys. J. 132, 565 (1960).

    Article  ADS  Google Scholar 

  25. Arnett, W. D.: Nature 219, 1344 (1968).

    Article  ADS  Google Scholar 

  26. Arnett, W. D.: Astrophys. Space Sci. 5, 180 (1969).

    Article  ADS  Google Scholar 

  27. Wheeler, J. C and Hansen, C J: Astrophys Space Sci 11, 373 (1971)

    ADS  Google Scholar 

  28. Barkat, Z, Buchler, J R, and Wheeler, J C: Astrophys J Letters 6, 117 (1970)

    ADS  Google Scholar 

  29. Bruenn, S W: Astrophys J 168, 203 (1971)

    Article  ADS  Google Scholar 

  30. Paczynski, B: Acta Astron 20, 47 (1970)

    ADS  Google Scholar 

  31. Bruenn, S W: Astrophys J 177, 459 (1972)

    Article  ADS  Google Scholar 

  32. Wheeler, J. C., Buchler, J.-R., and Barkat, Z. K.: Astrophys. J. 184, 897 (1973).

    Article  ADS  Google Scholar 

  33. Colgate, S. A. and Johnson, M. H.: Phys. Rev. Letters 5, 235 (1960).

    Article  ADS  Google Scholar 

  34. Colgate, S. A. and Noerdlinger, P. D.: Astrophys. J. 165, 509 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht-Holland

About this chapter

Cite this chapter

Colgate, S.A. (1975). Supernovae. In: Gursky, H., Ruffini, R. (eds) Neutron Stars, Black Holes and Binary X-Ray Sources. Astrophysics and Space Science Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1767-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1767-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0542-6

  • Online ISBN: 978-94-010-1767-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics