Skip to main content

Part of the book series: Advances in Earth and Planetary Sciences ((AEPS,volume 1))

Abstract

At least four types of sub-domain magnetic moments, on a scale smaller than the main domain structure, could contribute to pseudo-single-domain intensities of TRM (thermoremanent magnetization) in small multidomain grains. Of these, moments pinned by the stress fields of dislocations, surface moments, and moments due to the Barkhausen discreteness of domain wall positions are either strongly shielded by the magnetically soft matrix, subject to the internal demagnetizing field during magnetization changes, or so coupled to the domain structure that they cannot change magnetization independently. Only the net moments of domain walls themselves qualify as ‘psarks’—subdomain moments with truly single-domain behaviour. A new reversal mode, domain wall inversion or curling, is postulated to explain the incoherent reversal of domain wall moments. It amounts to nucleating and propagating a Bloch line across a 180° domain wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amar, H., Magnetization mechanism and domain structure of multi-domain particles, Phys. Rev., 111, 149–153, 1958.

    Article  Google Scholar 

  • Banerjee, S. K., On the origin of stable remanence in pseudo-single domain grains, J. Geomag. Geoelectr., 29, 319–329, 1977.

    Article  Google Scholar 

  • Bean, C. P. and J. D. Livingston, Superparamagnetism, J. Appl. Phys., 30, 120S–129S, 1959.

    Article  Google Scholar 

  • Brown, W. F., Virtues and weaknesses of the domain concept, Rev. Mod. Phys., 17, 15–19, 1945.

    Article  Google Scholar 

  • Brown, W. F., Rigorous approach to the theory of ferromagnetic microstructure, J. Appl. Phys., 29, 470–471, 1958.

    Article  Google Scholar 

  • Brown, W. F., Micromagnetics, pp. 143, Interscience, New York, 1963.

    Google Scholar 

  • Butler, R. F. and S. K. Banerjee, Theoretical single-domain grain size range in magnetite and titanomagnetite, J. Geophys. Res., 80, 4049–4058, 1975.

    Article  Google Scholar 

  • Davis, P. M. and M. E. Evans, Interacting single-domain properties of magnetite intergrowths, J. Geophys. Res., 81, 989–994, 1976.

    Article  Google Scholar 

  • Day, R., TRM and its variation with grain size: a review, J. Geomag. Geoelectr., 29, 233–265, 1977.

    Article  Google Scholar 

  • De Blois, R. W. and C. D. Graham, Domain observations on iron whiskers, J. Appl. Phys., 29, 931–939, 1958.

    Article  Google Scholar 

  • Dickson, G. O., C. W. F. Everitt, L. G. Parry, and F. D. Stacey, Origin of thermoremanent magnetization, Earth Planet. Sci. Lett., 1, 222–224, 1966.

    Article  Google Scholar 

  • Dunlop, D. J., Magnetite: behavior near the single-domain threshold, Science, 176, 41–43, 1972.

    Article  Google Scholar 

  • Dunlop, D. J., Thermoremanent magnetization in submicroscopic magnetite, J. Geophys. Res., 78, 7602–7613, 1973a.

    Article  Google Scholar 

  • Dunlop, D. J., Theory of the magnetic viscosity of lunar and terrestrial rocks, Rev. Geophys. Space Phys., 11, 855–901, 1973b.

    Article  Google Scholar 

  • Dunlop, D. J., Superparamagnetic and single-domain threshold sizes in magnetite, J. Geophys. Res., 78, 1780–1793, 1973c.

    Article  Google Scholar 

  • Dunlop, D. J., The hunting of the ‘psark’ (abstract), EOS (Trans. Am. Geophys. Union), 57, 904, 1976a.

    Google Scholar 

  • Dunlop, D. J., Thermal fluctuation analysis: a new technique in rock magnetism, J. Geophys. Res., 81, 3511–3517, 1976b.

    Article  Google Scholar 

  • Dunlop, D. J., Magnetic hysteresis of single-domain and two-domain iron oxide particles, in preparation, 1977.

    Google Scholar 

  • Dunlop, D. J. and M-M. Bina, The coercive force spectrum of magnetite at high temperatures: evidence for thermal activation below the blocking temperature, Geophys. J. R. Astron. Soc., 1977 (in press).

    Google Scholar 

  • Dunlop, D. J. and E. D. Waddington, The field dependence of thermoremanent magnetization in igneous rocks, Earth Planet. Sci. Lett., 25, 11–25, 1975.

    Article  Google Scholar 

  • Dunlop, D. J. and G. F. West, An experimental evaluation of single-domain theories, Rev. Geophys. Space Phys., 7, 709–757, 1969.

    Article  Google Scholar 

  • Dunlop, D. J., F. D. Stacey, and D. E. W. Gillingham, The origin of thermoremanent magnetization: contribution of pseudo-single-domain magnetic moments, Earth Planet. Sci. Lett., 21, 288–294, 1974.

    Article  Google Scholar 

  • Evans, M. E., Single domain oxide particles as a source of thermoremanent magnetization, J. Geomag. Geoelectr., 29, 261–215, 1977.

    Article  Google Scholar 

  • Fletcher, E. J. and W. O’Reilly, Contribution of Fe2+ ions to the magnetocrystalline anisotropy constant K1 of Fe3-xTix (0<x<T0.1), Proc. Phys. Soc. (London), Solid State Phys., 7, 171–178, 1974.

    Google Scholar 

  • Frei, E. H., S. Shtrikman, and D. Treves, Critical size and nucleation field of ideal ferromagnetic particles, Phys. Rev., 106, 446–455, 1957.

    Article  Google Scholar 

  • Galt, J. K., Motion of a ferromagnetic domain wall in Fe3O4, Phys. Rev., 85, 664–669, 1952.

    Article  Google Scholar 

  • Kneller, E. F. and F. E. Luborsky, Particle size dependence and remanence of single-domain particles, J. Appl. Phys., 34, 656–658, 1963.

    Article  Google Scholar 

  • Mcnab, T. K., R. A. Fox, and A. J. F. Boyle, Some magnetic properties of magnetite (Fe3O4) micro- crystals, J. Appl. Phys., 39, 5703–5711, 1968.

    Article  Google Scholar 

  • Merrill, R. T., The demagnetization field of multidomain grains, J. Geomag. Geoelectr., 29, 285–292, 1977.

    Article  Google Scholar 

  • Néel, L., Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites, Ann. Géophys., 5, 99–136, 1949.

    Google Scholar 

  • Néel, L., Théorie du trainage magnétique des substances massives dans le domaine de Rayleigh, J. Phys. Radium, 11, 49–61, 1950.

    Article  Google Scholar 

  • Néel, L., Some theoretical aspects of rock magnetism, Adv. Phys., 4, 191–242, 1955.

    Article  Google Scholar 

  • Ozima, M. and M. Ozima, Origin of thermoremanent magnetization, J. Geophys. Res., 70, 1363–1369, 1965.

    Article  Google Scholar 

  • Parry, L.G., Magnetic properties of dispersed magnetite powders, Philos. Mag., 11, 303–312, 1965.

    Article  Google Scholar 

  • Schmidt, V. A., A multidomain model of thermoremanence, Earth Planet. Sci. Lett., 20, 440–446, 1973.

    Article  Google Scholar 

  • Shive, P. N., Dislocation control of magnetization, J. Geomag. Geoelectr., 21, 519–529, 1969.

    Article  Google Scholar 

  • Shtrikman, S. and D. Treves, Internal structure of Bloch walls, J. Appl Phys., 31, 147S–148S, 1960.

    Article  Google Scholar 

  • Soffel, H. C., Domain structure of titanomagnetites and its variation with temperature, J. Geomag. Geoelectr., 29, 277–284, 1977.

    Article  Google Scholar 

  • Stacey, F. D., A generalized theory of thermoremanence, covering the transition from single domain to multidomain magnetic grains, Philos. Mag., 7, 1887–1900, 1962.

    Article  Google Scholar 

  • Stacey, F. D., The physical theory of rock magnetism, Adv. Phys., 12, 45–133, 1963.

    Article  Google Scholar 

  • Stacey, F. D. and S. K. Banerjee, The Physical Principles of Rock Magnetism, pp. 195, Elsevier, New York, 1974.

    Google Scholar 

  • Stephenson, A., The observed moment of a magnetized inclusion of high Curie point within a titanomagnetite particle of lower Curie point, Geophys. J. R. Astron. Soc., 40, 29–36, 1975.

    Google Scholar 

  • Stoner, E. C. and E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. R. Soc. (London), Ser. A, 240, 599–642, 1948.

    Article  Google Scholar 

  • Strangway, D. W., E. E. Larson, and M. Goldstein, A possible cause of high magnetic stability in volcanic rocks, J. Geophys. Res., 73, 3787–3795, 1968.

    Article  Google Scholar 

  • Street, R. and J. C. Woolley, A study of magnetic viscosity, Proc. Phys. Soc. (London), Ser. A, 62, 562–572, 1949.

    Article  Google Scholar 

  • Verhoogen, J., The origin of thermoremanent magnetization, J. Geophys. Res., 64, 2441–2449, 1959.

    Article  Google Scholar 

  • Wohlfarth, E.P., The remanent magnetization of haematite powders, Philos. Mag., 46, 1155–1164, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David J. Dunlop

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Center for Academic Publications Japan

About this chapter

Cite this chapter

Dunlop, D.J. (1977). The Hunting of the ‘Psark’. In: Dunlop, D.J. (eds) Origin of Thermoremanent Magnetization. Advances in Earth and Planetary Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1286-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1286-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1288-1

  • Online ISBN: 978-94-010-1286-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics