Skip to main content

TRM and Its Variation with Grain Size

  • Chapter
Origin of Thermoremanent Magnetization

Part of the book series: Advances in Earth and Planetary Sciences ((AEPS,volume 1))

  • 70 Accesses

Abstract

Thermoremanent magnetization (TRM), the dominant mechanism in igneous rocks, has been investigated for many years, yielding a large data base of experimental results and several theoretical models. However, there are still a large number of discrepancies between the observations and the theories.

ArticleNote

Paper presented at the special session on the ‘Origin of TRM,’ American Geophysical Union, San Franscisco, December 9, 1976.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amar, H., On the width and energy of domain walls in small multi-domain particles, J. Appl. Phys., 28, 732–733, 1957.

    Article  Google Scholar 

  • Amar, H., Size dependence of the wall characteristics in a two-domain iron particle, J. Appl. Phys., 29, 542–543, 1958a.

    Article  Google Scholar 

  • Amar, H., Magnetization mechanism and domain structure of multi-domain particles, Phys. Rev., 111, 149–153, 1958b.

    Article  Google Scholar 

  • Bailey, M. E., The magnetic properties of PSD grains, M.S. thesis, University of Toronto, 1975.

    Google Scholar 

  • Bailey, M. E., D. J. Dunlop, and K. L. Buchan, Alternating field demagnetization characteristics of pseudo-single-domain grains, EOS, 56, 353, 1975.

    Google Scholar 

  • Banerjee, S. K., On the origin of stable remanence in pseudo single-domain grains, J. Geomag. Geoelectr., 29, 319–329, 1977.

    Article  Google Scholar 

  • Bean, C.P. and J. D. Livingston, Superparamagnetism, J. Appl. Phys., 30, 120S–129S, 1959.

    Article  Google Scholar 

  • Berkowitz, A. E. and W. J. Schuele, Magnetic properties of some ferrite micropowders, J. Appl. Phys., 30, 134S, 1959.

    Article  Google Scholar 

  • Brown, W. F., Relaxational behavior of fine magnetic particles, J. Appl. Phys., 30, 130S, 1959.

    Article  Google Scholar 

  • Butler, R. F. and S. K. Banerjee, Theoretical single-domain grain size range in magnetite and titanomagnetite, J. Geophys. Res., 80, 4049–4058, 1975.

    Article  Google Scholar 

  • Day, R., The effect of grain size on the magnetic properties of the magnetite-ulvospinel solid solution series, Thesis, Univ. of Pittsburgh, Pittsburgh, Pa., 1973.

    Google Scholar 

  • Day, R., Some curious thermomagnetic curves and their interpretation, Earth Planet. Sci. Lett., 27, 95, 1975.

    Article  Google Scholar 

  • Day, R., M. D. Fuller, and V. A. Schmidt, Magnetic hysteresis properties of synthetic titanomagnetites, Geophys. Res., 81, 873, 1976.

    Article  Google Scholar 

  • Day, R., M. D. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260, 1977.

    Article  Google Scholar 

  • Dickson, G. O., C. W. F. Everitt, L. G. Parry, and F. D. Stacey, Origin of thermoremanent magnetization, Earth Planet. Sci. Lett., 1, 222, 1966.

    Article  Google Scholar 

  • Doell, D. D. and A. Cox, , J. Geophys. Res., 68, 1997, 1963.

    Article  Google Scholar 

  • Dunlop, D. J., Hysteresis properties of synthetic and natural mono-domain grains. Philos. Mag., 19, 329, 1969.

    Article  Google Scholar 

  • Dunlop, D. J., Thermoremanent magnetization in submicroscopic magnetite, J. Geophys. Res., 78, 7602–7613, 1973a.

    Article  Google Scholar 

  • Dunlop, D. J., Superparamagnetic and single-domain threshold sizes in magnetite, J. Geophys. Res., 78, 1780, 1973b.

    Article  Google Scholar 

  • Dunlop, D. J., Thermal fluctuation analysis; a new technique in rock magnetism, J. Geophys. Res., 81, 3511, 1976.

    Article  Google Scholar 

  • Dunlop, D. J., The hunting of the ‘Psark’, J. Geomag. Geoelectr., 29, 293–318, 1977.

    Article  Google Scholar 

  • Dunlop, D. J. and M.-M. Bina, The coercive force spectrum of magnetite at high temperatures: evidence for thermal activation below the blocking temperature, Geophys. J.R. Astron. Soc., 1977 (in press).

    Google Scholar 

  • Dunlop, D. J. and E. D. Waddington, The field dependence of thermoremanent magnetization of igneous rocks, Earth Planet. Sci. Lett., 25, 11, 1975.

    Article  Google Scholar 

  • Dunlop, D. J. and G. F. West, An experimental evaluation of single-domain theories, Rev. Geophys., 7, 709, 1969.

    Article  Google Scholar 

  • Dunlop, D. J., J. A. Hanes, and L. K. Buchan, Indices of multi-domain magnetic behavior in basic igneous rocks: alternating field demagnetization, hysteresis, and oxide petrology, J. Geophys. Res., 78, 1387, 1973.

    Article  Google Scholar 

  • Dunlop, D. J., F. D. Stacey, and D. E. W. Gillingham, The origin of thermoremanent magnetization: contribution of pseudo single-domain magnetic moments, Earth Planet. Sci. Lett., 21, 288, 1974.

    Article  Google Scholar 

  • Evans, M. E., Single-domain particles and TRM in rocks, Comments Earth Sci. Geophys., 2, 139,1972.

    Google Scholar 

  • Evans, M. E. and M. L. Wayman, An investigation of small magnetic particles by means of electron microscopy, Earth Planet. Sci. Lett.,9, 365–370, 1970.

    Article  Google Scholar 

  • Everitt, C. W. F., Thermoremanent magnetization, I: Experiments on single-domain grains, Philos. Mag., 6, 713, 1961.

    Article  Google Scholar 

  • Everitt, C. W. F., Thermoremanent magnetization, II: Experiments on multi-domain grains, Philos. Mag., 7, 583, 1962a.

    Article  Google Scholar 

  • Everitt, C. W. F., Thermoremanent magnetization, III: Theory of multi-domain grains, Philos. Mag., 7, 599, 1962b.

    Article  Google Scholar 

  • Frei, E. H., S. Shtrikman, and D. Treves, Critical size and nucleation field of ideal ferromagnetic particles, Phys. Rev., 106, 446–455, 1957.

    Article  Google Scholar 

  • Johnson, H. P., W. Lowrie, and D. V. Kent, Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles, Geophys. J.R. Astron. Soc., 41, 1, 1975.

    Google Scholar 

  • Kittel, C., Physical theory of ferromagnetic domains, Rev. Mod. Phys., 21, 541–583, 1949.

    Article  Google Scholar 

  • Kneller, E. F. and F. E. Luborsky, Particle size dependence of coercivity and remanence of single- domain particles, J. Appl. Phys., 34, 656, 1963.

    Article  Google Scholar 

  • Kobayashi, K. and M. D. Fullfr, Stable remanence and memory of multi-domain materials with special reference to magnetite, Philos. Mag., 18, 601, 1968.

    Article  Google Scholar 

  • Koenigsberger, J. G., Natural residual magnetism of eruptive rocks, Terr. Magn. Atmos. Electr., 43, 119 and 299, 1938.

    Article  Google Scholar 

  • Kropčàek, V., Self-reversal of spontaneous magnetization of natural cassiterite, Stud. Geophys. Geod. Ceskoslov. Acad. Ved., 19, 108, 1968.

    Google Scholar 

  • Larson, E., M. Ozima, M. Ozima, T. Nagata, and D. Strangway, Stability of remanent magnetization of igneous rocks, Geophys. J.R. Astron. Soc., 17, 263–292, 1969.

    Google Scholar 

  • Levi, S., Some magnetic properties of magnetites as a function of grain size and their implications for paleomagnetism, Ph.D. thesis, Univ. of Washington, 1974.

    Google Scholar 

  • Levi, S. and R. T. Merrill., A comparison of ARM and TRM in magnetite, 1976 (in press).

    Google Scholar 

  • Levi, S. and R. T. Merrill, Properties of single-domain, pseudo single-domain and multi-domain magnetite, J. Geophys. Res., 1977 (in press).

    Google Scholar 

  • Lowrie, W., The effects of internal stress on remanence and coercive force in nickel and magnetite, Thesis, University of Pittsburgh, Pittsburgh, Pa., 1967.

    Google Scholar 

  • Lowrie, W. and M. D. Fuller, On the alternating field demagnetization characteristic of multi- domain magnetization in magnetite, J. Geophys. Res., 76, 6339, 1971.

    Article  Google Scholar 

  • Luborsky, F. E., Development of elongated fine particle magnets, J. Appl. Phys., 32, 1715, 1901.

    Google Scholar 

  • Meikeljohn, W. H., Experimental study of the coercive force of fine particles, Rev. Mod. Phys., 25, 302, 1953.

    Article  Google Scholar 

  • Melloni, M., Napali, Atti. Acc. Sci., 1, 121, 1853.

    Google Scholar 

  • Merrill, R. T., The demagnetization field of multi-domain magnetite, J. Geomag. Geoelectr., 29, 285–292, 1977.

    Article  Google Scholar 

  • Morrish, A. H. and S. P. Yu, Dependence of the coercive force on the density of some iron oxide powders, J. Appl. Phys., 26, 1049–1055, 1955.

    Article  Google Scholar 

  • Murthy, G. S., M. E. Evans, and D. I. Gough, Evidence for single-domain magnetite in the Michikamau anorthosite, Can. J. Earth Sci., 8, 361–370, 1971.

    Article  Google Scholar 

  • Nagata, T., The mode of causation of thermo-remanent magnetism in igneous rocks, Preliminary note, Bull. Earthq. Res. Inst.,19, 49, 1941, and20, 192, 1942.

    Google Scholar 

  • Nagata, T., S. Uyeda, and S. Akimoto, Self-reversal of thermoremanent magnetization of igneous rocks, J. Geomag. Geoelectr., 4, 22, 1952.

    Article  Google Scholar 

  • NéEl, L., Proprietes d’un ferromagnetique cubique en grains fins, C.R. Acad. Sci., 224, 1498, 1947.

    Google Scholar 

  • NéEl, L., Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites, Ann. Geophys., 5, 99, 1949.

    Google Scholar 

  • NéEl, L., Some theoretical aspects of rock magnetism, Adv. Phys., 4, 191, 1955.

    Article  Google Scholar 

  • Ozima, M. and M. Ozima, Origin of thermoremanent magnetization, J. Geophys. Res., 70, 1363, 1965.

    Article  Google Scholar 

  • Ozima, M., M. Ozima, and T. Nagata, , J. Geomag. Geoelectr., 16, 37, 1964.

    Article  Google Scholar 

  • Parry, L. G., Magnetic properties of dispersed magnetite powders, Philos. Mag.,11, 303–311, 1965.

    Article  Google Scholar 

  • Petrov, I. N. and V. V. Metallova, 12V., Earth Sci., 9, 555, 1968.

    Google Scholar 

  • Rahman, A. A., A. D. Duncan, and L. G. Parry, Magnetisation of multi-domain magnetite, Riv. Ital. Geofis., 22, 259, 1973.

    Google Scholar 

  • Rimbert, F., Contribution a l>’etude de Paction de champs alternatifs sur les aimanations remanentes des roches. Applications geophysiques, Rev. Inst. Fr. Pét., 14, 17 and 123, 1959.

    Google Scholar 

  • Robins, B. W., Remanent magnetization in spinel iron-oxides, Ph.D. thesis, University of New South Wales, Australia, 1972.

    Google Scholar 

  • Roquet, J., Sur les rémanances magnetiques des oxydes de fer et leur interet en geomagnetisme, Ann. Geophys., 10, 226 and 182, 1954.

    Google Scholar 

  • Schmidt, V. A., A malti-domain model of thermoremanence, Earth Planet. Sci. Lett., 20, 440–446, 1973.

    Article  Google Scholar 

  • Schmidt, V. A., The variation of the blocking temperature in models of thermoremanence (TRM), Earth Planet, Sci. Lett., 29, 146, 1976.

    Article  Google Scholar 

  • Schult, A., Self-reversal of magnetization and chemical composition of titanomagnetites in basalts, Earth Planet. Lett., 4, 440, 1968.

    Google Scholar 

  • Shive, P. N., Dislocation control of magnetization, J. Geomag. Geoelectr., 21, 519, 1969a.

    Article  Google Scholar 

  • Shive, P. N., The effect of internal stress on the thermoremanence of nickel, J. Geophys. Res., 74, 381, 1969b.

    Article  Google Scholar 

  • Soffel, H., The single-domain/multi-domain transition in intermediate titanomagnetites, Z. Geophys., 37, 451, 1971.

    Google Scholar 

  • Soffel, H., Domain structure of titanomagnetites and its variation with temperature, J. Geomag. Geoelectr., 29, 277–284, 1977.

    Article  Google Scholar 

  • Stacey, F. D., Thermoremanent magnetization (TRM) of multi-domain grains in igneous rocks, Philos. Mag.,3, 1391, 1958.

    Article  Google Scholar 

  • Stacey, F. D., A generalized theory of thermoremanence, covering the transition from single-domain to multi-domain magnetic grains., Philos. Mag., 7, 1887, 1962.

    Article  Google Scholar 

  • Stacey, F. D. and S. K. Banerjee, The Physical Principles of Rock Magnetism, pp. 195, Elsevier, New York, 1974.

    Google Scholar 

  • Stacey, F. D. and K. N. Wise, Crystal dislocations and coercivity in fine-grained magnetite, Aust. J. Phys., 20, 507, 1967.

    Article  Google Scholar 

  • Stoner, E. C. and E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A, 240, 599–642, 1948.

    Article  Google Scholar 

  • Syono, Y., S. Akimoto and T. Nagata, Remanent magnetization of ferromagnetic single crystal, J. Geomag. Geoelectr., 14, 113, 1962.

    Article  Google Scholar 

  • Syono, Y., Magnetocrystalline anisotropy and magnetization of Fe304-Fe2Ti04 series with special application to rock magnetism, Jpn. J. Geophys., 4, 71, 1965.

    Google Scholar 

  • Thellier, E., Sur l’Aimantations des ferres cuites et ses applications geophysiques, Ann. Inst. Phys. Globe, Univ. Paris,16, 157, 1938.

    Google Scholar 

  • Uyeda, S., TRM as a medium of paleomagnetism, with special reference to reverse TRM, J. Geomag. Geoelectr., 2, 1, 1958.

    Google Scholar 

  • Verhoogen, J., The origin of thermoremanent magnetization, J. Geophys. Res., 64, 2441, 1959.

    Article  Google Scholar 

  • Wasilewski, P. J., Magnetic hysteresis of natural materials, Earth Planet. Sci. Lett., 20, 67, 1973.

    Article  Google Scholar 

  • Wescott-Lewis, M. F. and L. G. Parry, Thermoremanence in synthetic rhombohedral iron-titanium oxides, Aust. J. Phys., 24, 735, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David J. Dunlop

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Center for Academic Publications Japan

About this chapter

Cite this chapter

Day, R. (1977). TRM and Its Variation with Grain Size. In: Dunlop, D.J. (eds) Origin of Thermoremanent Magnetization. Advances in Earth and Planetary Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1286-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1286-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1288-1

  • Online ISBN: 978-94-010-1286-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics