Advertisement

Simplicity

  • Roger D. Rosenkrantz
Chapter
Part of the Synthese Library book series (SYLI, volume 115)

Abstract

Scientific inference is thought to be hypothetical-deductive: from given facts or experimental findings we infer laws or theories from which the facts follow or which account for the facts. This is an oversimplification, though, for the facts or findings are seldom logical consequences of the explanatory theory, but merely ‘agree’ with the theory. Bayes’ rule then enters as a more general scheme of hypothetical deduction: from given facts, to infer the most plausible theory that affords those facts highest probability.

Keywords

Multinomial Model Information Matrix Sample Coverage Category Probability Linkage Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ackermann, R.: 1961, ‘Inductive Simplicity’, Phil. Sci. 28, 152–161.CrossRefGoogle Scholar
  2. Birnbaum, A.: 1969, ‘Concepts of Statistical Evidence’, Philosophy, Science and Method (S. Morgenbesser, P. Suppes, M. White, eds.), St. Martin’s Press, New York.Google Scholar
  3. Edwards, A. W. F.: 1972, Likelihood, Cambridge University Press, Cambridge.Google Scholar
  4. Einstein, A. and Infeld, L.: 1938, The Evolution of Physics, Simon and Schuster, New York.Google Scholar
  5. Friedman, K. S.: 1972, ‘Empirical Simplicity as Testability’, Brit. J. Phil. Sci. 23, 25–33.CrossRefGoogle Scholar
  6. Good, I. J.: 1968, ‘Corroboration, Explanation, Evolving Probability, Simplicity, and a Sharpened Razor’, Brit. J. Phil. Sci. 19, 123–43.CrossRefGoogle Scholar
  7. Good, I. J.: 1969, ‘A Subjective Evaluation of Bode’s Law and an “Objective” Test for Approximate Numerical Rationality’, J. Amer. Stat. Assoc. 64, 23–66.CrossRefGoogle Scholar
  8. Goodman, N.: 1959, ‘Recent Developments in the Theory of Simplicity’, Phil, and Phenom. Research 19, 429–446.CrossRefGoogle Scholar
  9. Goodman, N.: 1961, ‘Safety, Strength and Simplicity’, Phil. Sci. 28, 150–151.CrossRefGoogle Scholar
  10. Hintikka, K. J. J.: 1967, ‘Induction by Elimination and Induction by Enumeration’, The Problem of Inductive Logic (I. Lakatos, ed.), North-Holland Publ. Co., Amsterdam.Google Scholar
  11. Jeffreys, H. and Wrinch, D.: 1921, ‘On Certain Fundamental Principles of Scientific Inquiry’, Phil. Mag. 42, 369–390.Google Scholar
  12. Kemeny, J. G.: 1953, ‘The Use of Simplicity in Induction’, Phil. Rev. 62, 391–408.CrossRefGoogle Scholar
  13. Kemeny, J. G.: 1955, ‘Two Measures of Simplicity’, J. Phil. 52, 722–733.CrossRefGoogle Scholar
  14. Popper, K. R.: 1959, Logic of Scientific Discovery, Hutchinson, London.Google Scholar
  15. Post, H. R.: 1960, ‘Simplicity in Scientific Theories’, Brit. J. Phil. Sci. 11, 32–41.CrossRefGoogle Scholar
  16. Rosenkrantz, R. D.: 1976, ‘Simplicity’, Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science (W. A. Harper and C. K. Hooker, eds.), D. Reidel, Dordrecht, Vol. 1, 167–203.Google Scholar
  17. Smith, C. A. B.: 1969, Biomathematics, Vol. 2, Griffin, London.Google Scholar
  18. Sober, E.: 1975, Simplicity, Oxford University Press, Oxford.Google Scholar
  19. Sinnott, E. W., Dunn, L. C., and Dobzhansky, T.: 1958, Principles of Genetics, McGraw-Hill, New York.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1977

Authors and Affiliations

  • Roger D. Rosenkrantz
    • 1
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations