Inductivism and Probabilism

Part of the Synthese Library book series (SYLI, volume 115)


It is considered a truism that not all inferences are deductive. Arguments which compel assent, granted their premisses, are said to be limiting cases of the more general class of those whose premisses support their conclusions inconclusively. Such arguments are variously labelled ‘inductive’, ‘informative’, or ‘probable’. The conclusions of deductive arguments from true premisses are invariably true, while conclusions of probable arguments from true premisses are said to be ‘for the most part true’.1 One speaks also of ‘arguments by analogy’, ‘statistical syllogisms’, and the like — terms which further argue that induction and deduction are but two sides of the same inferential coin.


Posterior Distribution Prior Probability Induction Rule Predictive Probability Invariance Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E.: 1966, ‘Probability and the Logic of Conditionals’, Aspects of Inductive Logic (K. J. J. Hintikka and P. Suppes, eds.), North-Holland Publ. Co., Amsterdam.Google Scholar
  2. Box, G. E. P. and Tiao, G. E.: 1973, Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, Mass.Google Scholar
  3. Carnap, R.: 1952, The Continuum of Inductive Methods, University of Chicago Press, Chicago.Google Scholar
  4. DeFinetti, B.: 1969, ‘Initial Probabilities: A Pre-requisite to Any Valid Induction’, Synthese 20 , 1–13. CrossRefGoogle Scholar
  5. DeFinetti, B.: 1972, Probability, Induction and Statistics, Wiley, N.Y., Chapters 1–3, 8, 9.Google Scholar
  6. Edwards, A. W. F.: 1972, Likelihood, Cambridge University Press, Cambridge.Google Scholar
  7. Edwards, W., Lindman, H., and Savage, L. J.; 1963, ‘Bayesian Statistical Inference for Psychological Research’, Psych. Rev. 70, 193.CrossRefGoogle Scholar
  8. Feigl, H.: 1950, ‘De Principiis Non-disputandum…?’, Philosophical Analysis (M. Black, ed.), Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  9. Feller, W.: 1957, Introduction to Probability Theory and its Applications, I, 2nd ed., Wiley, New York.Google Scholar
  10. Feller, W.: 1966, Introduction to Probability Theory and its Applications, II, Wiley, New York.Google Scholar
  11. Fine, T.: 1973, Theories of Probability, Academic Press, New York.Google Scholar
  12. Gibbs, J. W.: 1902, Elementary Principles in Statistical Mechanics, Yale University Press, New Haven.Google Scholar
  13. Good, I. J.: 1965, The Estimation of Probabilities, MIT Press, Cambridge, Mass.Google Scholar
  14. Harper, W. A.: 1976, ‘Rational Belief Change’, Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science (W. A. Harper and C. K. Hooker, eds.), II, D. Reidel, Dordrecht.Google Scholar
  15. Hartigan, J. A.: 1964, ‘Invariant Prior Distributions’, Ann. Math. Stat. 35, 836.CrossRefGoogle Scholar
  16. Hume, D.: 1748, An Enquiry Concerning Human Understanding London.Google Scholar
  17. Jaynes, E. T.: 1957, ‘Information Theory and Statistical Mechanics’, Part I, Phys. Rev. 106, 620–630;CrossRefGoogle Scholar
  18. Jaynes, E. T.: 1957, ‘Information Theory and Statistical Mechanics’, Part II, Phys. Rev. 108, 171–191.CrossRefGoogle Scholar
  19. Jaynes, E. T.: 1963, ‘New Engineering Applications of Information Theory’, Proc. 1st Symp. on Engineering Appls. of Random Function Theory and Probability (J. L. Bogandoff and F. Kozin, eds.), Wiley, N.Y., pp. 163–203.Google Scholar
  20. Jaynes, E. T.: 1967, ‘Foundations of Probability Theory and Statistical Mechanics’, Delaware Sem. in the Foundations of Physics (M. Bunge, ed.), Springer, Berlin.Google Scholar
  21. Jaynes, E. T.: 1968, ‘Prior Probabilities’, IEEE Trans. Systems Sci. Cybernetics, SSC-4, pp. 227–241.CrossRefGoogle Scholar
  22. Jaynes, E. T.: 1970, ‘The Well-Posed Problem’, Foundations of Statistical Inference (V. P. Godambe and D. A. Sprott, eds.), Holt, Rinehart and Winston, Toronto.Google Scholar
  23. Jeffrey, R. C: 1965, The Logic of Decision, McGraw-Hill, New York.Google Scholar
  24. Jeffreys, H.: 1961, Theory of Probability, 3rd ed., Oxford University Press, Oxford.Google Scholar
  25. Keynes, J. M.: 1921, A Treatise of Probability, Macmillan, London (reprinted Harper Torchbooks, N.Y., 1962).Google Scholar
  26. Peirce, C. S.: 1878, ‘The Probability of Induction’, Collected Papers, II (C. Hartshorne and P. Weiss, eds.), Harvard Press, Cambridge, Mass., pp. 415–432.Google Scholar
  27. Peirce, C. S.: 1883, ibid., 433–477.Google Scholar
  28. Raimi, R.: 1969, ‘The Peculiar Distribution of First Digits’, Sci. Am. 221, no. 6, 109–120.CrossRefGoogle Scholar
  29. Ramsey, F. P.: 1926, ‘Truth and Probability’, reprinted in Studies in Subjective Probability (H. Kyburg and H. Smokier, eds.), Wiley, New York.Google Scholar
  30. Reichenbach, H.: 1938, Experience and Prediction, Chicago.CrossRefGoogle Scholar
  31. Savage, L. J.: 1954, The Foundations of Statistics, Wiley, New York.Google Scholar
  32. Savage, L. J.: 1971, ‘Elicitation of Personal Probabilities and Expectations’, J. Am. Stat. Assoc. 66, 783–801.CrossRefGoogle Scholar
  33. Schmitt, R.: 1969, Measuring Uncertainty, Addison-Wesley, Reading, Mass.Google Scholar
  34. Strawson, P. F.: 1952, Introduction to Logical Theory, Wiley, New York.Google Scholar
  35. Teller, P.: 1976, ‘Conditionalization, Observation and Change of Preference’, Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, II, D. Reidel, Dordrecht.Google Scholar
  36. Williams, D. C:1947, The Ground of Induction, Harvard Press, Cambridge, Mass.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1977

Authors and Affiliations

  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations