Advertisement

Testing

  • Roger D. Rosenkrantz
Chapter
Part of the Synthese Library book series (SYLI, volume 115)

Abstract

Interpreted as indices of the support for an hypothesis, Fisherian significance tests are assimilable into the corpus of Bayesian methods. The observed sample coverage is an approximation to the average likelihood, and one that is often more convenient to use (or which can be used as a surrogate when the likelihood function cannot be computed). Moreover, the OSC has a clear and definite meaning as a measure of the improbability of a theory’s accuracy. Any two theories or hypotheses can be compared in this respect, whether they are exclusive or not, and whether they are drawn from the same or disparate fields of science. In what follows, I will refer to this interpretation of significance tests as ‘the Bayesian evidential interpretation’.

Keywords

Error Probability Error Characteristic Bernoulli Trial Relevant Subset Inductive Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Anscombe, F. J.: 1963, ‘Tests of Goodness of Fit’, J. Roy. Stat. Soc., B, 25, 81–94.Google Scholar
  2. Bakan, D.: 1967, ‘The Test of Significance in Psychological Research’, On Method, Jossey-Bass, San Francisco, 1–29 (reprinted in Morrison and Henkel).Google Scholar
  3. Barnard, G. A.: 1947, ‘The Meaning of a Significance Level’, Biometrika 34, 179–182.Google Scholar
  4. Birnbaum, A.: 1962, ‘On the Foundations of Statistical Inference’, J. Am. Stat. Assoc. 57, 269–306.CrossRefGoogle Scholar
  5. Birnbaum, A.: 1969, ‘Concepts of Statistical Evidence’, Philosophy, Science and Method (S. Morgenbesser, P. Suppes, and M. White, eds.), St. Martin’s Press, New York.Google Scholar
  6. Cox, D. R.: 1958, ‘Some Problems Connected With Statistical Inference’, Ann. Math. Stat. 29, 357–372.CrossRefGoogle Scholar
  7. Cramer, H.: 1946, Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey.Google Scholar
  8. Edwards, A. W. F.: 1972, Likelihood, Cambridge University Press, Cambridge.Google Scholar
  9. Feller, W.: 1957, Introduction to Probability Theory and its Applications, Wiley, New York.Google Scholar
  10. Fisher, R. A.: 1955, ‘Statistical Methods and Scientific Induction’, J. Roy. Stat. Soc., B, 17, 69–78 (reprinted in Fisher, 1974).Google Scholar
  11. Fisher, R. A.: 1956a, ‘On a Test of Significance in Pearson’s Biometrika Tables (No. 10)’, J. Roy. Stat. Soc., B, 56–60 (reprinted in Fisher, 1974).Google Scholar
  12. Fisher, R. A.: 1956b, Statistical Methods and Scientific Inference, Oliver and Boyd, Edinburgh.Google Scholar
  13. Fisher, R. A.: 1974, The Collected Papers of R. A. Fisher, Vol. 5 (ed. by J. H. Bennett), University of Adelaide Press, Adelaide.Google Scholar
  14. Giere, R. N.: 1976, ‘Empirical Probability, Objective Statistical Methods, and Scientific Inquiry’, Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science (W. A. Harper and C. K. Hooker, eds.), Vol. 2, pp. 63–101.Google Scholar
  15. Good, I. J.: 1976, ‘The Bayesian Influence, or How to Sweep Subjectivism Under the Carpet’, Foundations of Probability Theory, Statistical Inference and Statistical Theories of Science (W. A. Harper and C. K. Hooker, eds.), Vol. 2, D. Reidel, Dordrecht-Holland.Google Scholar
  16. Hacking, I.: 1965, Logic of Statistical Inference, Cambridge University Press, Cambridge.Google Scholar
  17. Hodges, J. L. and Lehmann, E. L.: 1954, ‘Testing the Approximate Validity of a Null Hypothesis’, J. Roy. Stat. Soc., B, 16,261–268.Google Scholar
  18. Jaynes, E. T.: 1968, ‘Prior Probabilities’, IEEE Trans, on Systems Science and Cybernetics, SSC-4, 227–241.CrossRefGoogle Scholar
  19. Jaynes, E. T.: 1976, ‘Confidence Intervals vs Bayesian Intervals’, Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science (W. A. Harper and C. K. Hooker, eds.), Vol. 2, D. Reidel, Dordrecht-Holland.Google Scholar
  20. Kalbfleisch, J. D. and Sprott, D. A.: 1970, ‘Applications of Likelihood Methods to Models Involving Large Numbers of Parameters’, J. Roy. Stat. Soc., B, 32, 175–208.Google Scholar
  21. Kalbfleisch, J. D. and Sprott, D. A.: 1974, ‘On the Logic of Tests of Significance with Special Reference to Testing the Significance of Poisson-Distributed Observations’, Information, Inference, and Decision (G. Menges, ed.), D. Reidel, Dordrecht-Holland.Google Scholar
  22. Kalbfleisch, J. D. and Sprott, D. A.: 1976, ‘On Tests of Significance’, Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, Vol. 2, D. Reidel, Dordrecht-Holland.Google Scholar
  23. Kendall, M. G. and Stuart, A.: 1967, The Advanced Theory of Statistics, Vol. 2, Griffin, London.Google Scholar
  24. Kyburg, H.: 1974, The Logical Foundations of Statistical Inference, Chapter II, D. Reidel, Dordrecht-Holland.Google Scholar
  25. Kyburg, H. and Smokier, H. (eds.): 1964, Studies in Subjective Probability, Wiley, New York.Google Scholar
  26. Lehmann, E. L.: 1958, ‘Significance Level and Power’ Ann. Math. Stat. 29, 1167–1176.CrossRefGoogle Scholar
  27. Lehmann, E. L.: 1959, Testing Statistical Hypotheses, Wiley, New York.Google Scholar
  28. Lieberman, B.: 1971, Contemporary Problems in Statistics, Oxford University Press, Oxford.Google Scholar
  29. Lindley, D. V.: 1957, ‘A Statistical Paradox’, Biometrika 44, 187–192.Google Scholar
  30. Lindley, D. V.: 1971, Bayesian Statistics, a Review, SIAM, Philadelphia.Google Scholar
  31. Marks, M: 1951, ‘Two Kinds of Experiment Distinguished in Terms of Statistical Operations’, Psych. Rev.58, 179–184 (reprinted in Lieberman).CrossRefGoogle Scholar
  32. Morrison, D.E. and Henkel, R. E.: 1970, The Significance Test Controversy, Aldine, Chicago.Google Scholar
  33. Morton, N.: 1955, ‘sequential Tests for the Detection of Linkage’, Am. J. Hum. Genetics 7, 277–318.Google Scholar
  34. Neyman, J.: 1950, First Course in Probability and Statistics, Henry Holt, New York.Google Scholar
  35. Neyman, J.: 1957, ‘“Inductive Behavior” as a Basic Concept of Philosophy of Science’, Rev. Inst. Int. de Stat. 25, 7–22.CrossRefGoogle Scholar
  36. Neyman, J. and Pearson, E. S.: 1933, ‘The Testing of Statistical Hypotheses in Relation to Probabilities a priori’, Proc. Cambridge Phil. Soc. 29, 492–510.CrossRefGoogle Scholar
  37. Neyman, J., Lovasich, J., Scott, E., and Wells, M.: 1971, ‘Further Studies of the Whitetop Cloud-Seeding Experiment’, Proc. Nat. Acad. Sci, 68, 147–151.CrossRefGoogle Scholar
  38. Neyman, J., Scott, E., and Shaw, C.D.: 1956, ‘Statistical Images of Galaxies with Particular Reference to Clustering’, Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. III, University of California Press, Berkeley.Google Scholar
  39. Robbins, H.: 1963, ‘A New Approach to a Classical Statistical Decision Problem’, Induction: Some Current Issues (H. Kyburg and E. Nagel, eds.) Wesleyan University Press, Middletown, Conn.Google Scholar
  40. Rozeboom, W.: 1960, ‘The Fallacy of the Null Hypothesis Significance Test’, Psych. Bull. 57, 416–428 (reprinted in Morrison and Henkel).CrossRefGoogle Scholar
  41. Savage, L. J.: 1961, ‘The Foundations of Statistics Reconsidered’, Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley (reprinted in Kyburg and Smokier).Google Scholar
  42. Savage, L. J., et al.: 1962, The Foundations of Statistical Inference, Methuen, London.Google Scholar
  43. Spielman, S.: 1973, ‘A Refutation of the Neyman-Pearson Theory of Testing’, Brit. J. Phil. Sci. 24, 201–222.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1977

Authors and Affiliations

  • Roger D. Rosenkrantz
    • 1
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations