Mathematical Modelling of Lunar Laser Measures and their Application to Improvement of Physical Parameters

  • J. Derral Mulholland
Part of the Astrophysics and Space Science Library book series (ASSL, volume 62)


It is important to understand that a lunar range measure is not a distance but a time delay, or aberration. This fact introduces certain complications into the computational procedures required to treat the data that may not be obvious to the non-specialist. This paper is a conceptual description of the step-by-step process required for the computation of lunar range predictions, showing both the nature of all of the mathematical aspects of the physical model, and also their means of application. The necessary departures from classical astronomical practice, such as the computation of lunar predictions in a heliocentric reference frame, are explained in terms of their importance to the accuracy of the final results. Comparable problems exist with respect to the application of the observational residuals to the improvement of parameter values in the physical model, and this process is described also.


Polar Motion Geodesic Curvature Lunar Laser Range Laser Data Equivalent Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calame, O.: 1974, Groupe de Recherches de Geodesie Spatiale Research Note, (unpublished).Google Scholar
  2. Calame, O.: 1976a, Compt. Rend. Acad. Sei. Paris, 282, B-133.ADSGoogle Scholar
  3. Calame, O.: 1976b, these proceedings.Google Scholar
  4. HMNAO: 1961, Explanatory Supplement to the Astronomical Ephemeris, H. M. Stationary Office, London.Google Scholar
  5. Holdridge, D. B. : 1967, Jet Propulsion Laboratory SPS, 37–48, III, 2.Google Scholar
  6. Hopfield, H.: 1972, Space Research 12, Akademie-Verlag, Berlin.Google Scholar
  7. Kuo, J. T.: 1976, these proceedings.Google Scholar
  8. Lammlein, D.: 1974, Seminar publication, Austin, Texas (unpublished).Google Scholar
  9. Latham, G. V. and Dorman, J.: 1976, these proceedings.Google Scholar
  10. Melbourne, W. G., Mulholland, J. D., Sjogren, W. L. and Sturms, F. M.: 1969, Jet Propulsion Laboratory TR 32-1306, 25.Google Scholar
  11. Mulholland, J. D.: 1972, Publ. Astron. Soc. Pacific 84, 357.ADSCrossRefGoogle Scholar
  12. Shapiro, I. I., Counselman, C. C. and King, R. W.: 1976, Phys. Rev. Letters 36, 555.ADSCrossRefGoogle Scholar
  13. Stolz, A., Bender, P. L., Faller, J. E., Silverberg, E. C., Mulholland, J. D., Shelus, P. J., Williams, J. G., Carter, W. E., Currie, D. G. and Kaula, W. M.: 1976, “Earth Rotation Measured by Lunar Laser Ranging” Science, in press.Google Scholar
  14. Williams, J. G., Slade, M. A., Eckhardt, D. H. and Kaula, W. M.: 1973, The Moon 8, 469.ADSCrossRefGoogle Scholar
  15. Williams, J. G., Dicke, R. H., Bender, P. L., Alley, C. O., Carter, W. E., Currie, D. G., Eckhardt, D. E., Faller, J. E., Kaula, W. M., Mulholland, J. D., Plotkin, H. H., Poultney, S. K., Shelus, P. J., Silverberg, E. C., Sinclair, W. S., Slade, M. A. and Wilkinson, D. T.: 1976, Phys. Rev. Letters 36, 551.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1977

Authors and Affiliations

  • J. Derral Mulholland
    • 1
  1. 1.McDonald Observatory and Department of AstronomyUniversity of Texas at AustinUSA

Personalised recommendations