Advertisement

Some Aspects of the Theory of Linear Evolution Equations

  • J. L. Lions
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 29)

Abstract

The goal of these lectures is to give (Chapter 1) a short survey of some of the methods available for proving existence and uniqueness in linear evolution equations, and in the following chapters, to indicate some trends and problems in this theory.

Keywords

Boundary Control Real Hilbert Space Additive Constant Semi Group Linear Evolution Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Bibliography of Chapter I

  1. [1]
    M.S. Baouendi and P. Grisvard — J.F.A. 1969Google Scholar
  2. [1]
    M. Bercovier — Thesis. 1976.Google Scholar
  3. [1]
    F. Brezzi — On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O. (1974), 129–151.Google Scholar
  4. [1]
    J. Chazarain — Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes. J.F.A. 7 (1971), p. 386–446.Google Scholar
  5. [1]
    Ph. Ciarlet — Lectures on finite element methods. Tata Institute Fund. Research — Bombay, 1975.Google Scholar
  6. [1]
    G. Da Prato and P. Grisvard — Somme d’opérateurs linéaires et équations différentielles opérationnelles. J.M.P.A. 54 (1975), p. 305–387.MATHGoogle Scholar
  7. [2]
    G. Da Prato and P. Grisvard — Equations d’évolution abstraites non linéaires de type parabolique. C.R.A.S. September 1976.Google Scholar
  8. [1]
    M. Dubinski — On an abstract theorem and its applications to boundary value problems for non classical equations. Math. Sbornik 79(121), 1969, p. 91–117 (Math. URSS Sbornik, 8, 1969, 87–113 ).Google Scholar
  9. [1]
    E. Hille and R.S. Phillips — Functional analysis and semi groups. Coll. Pub. A.M.S. 1957.Google Scholar
  10. [1]
    J.L. Lions — Equations différentielles opérationnelles et problèmes aux limites. Springer Verlag — 1961.MATHGoogle Scholar
  11. [1]
    J.L. Lions — Problèmes aux limites en théorie des distributions. Acta Math. 94 (1955), p. 12–153.Google Scholar
  12. [3]
    J.L. Lions — Sur les semi groupes distributions. Portugaliae Math. 19 (1960), 141–164.MATHGoogle Scholar
  13. [1]
    J.L. Lions and E. Magenes — Problèmes aux limites non homogènes et applications — Dunod, Vol. 1, 2 (1968), vol. 3 (1970) English translation: Springer 1972, 1973.Google Scholar
  14. [1]
    P.A. Raviart — Lectures Imperial College, June 1976.Google Scholar
  15. [1]
    K. Yosida — Functional analysis. Fourth Ed. Springer 1974.Google Scholar

Bibliography of Chapter II

  1. [1]
    A. Bensoussan, J.L. Lions and G. Papanicolaou — Book, to appear (North Holland).Google Scholar
  2. [2]
    Notes CRAS, Cf. CRAS, 282 (1976), p. 143–147 and the bibliography therein.Google Scholar
  3. [1]
    F. Colombini and S. Spagnolo — Sur la convergence de solutions d’équations paraboliques. To appear.Google Scholar
  4. [1]
    L. Tartar — To appear.Google Scholar

Bibliography to Chapter III

  1. [1]
    J. Hadamard — Leçons sur le Calcul des Variations. Paris, Hermann 1912.Google Scholar
  2. [1]
    J.L. Lions — Contrôle Optimal de Systèmes gouvernés par des équations aux dérivées partielles. Dunod, 1968.MATHGoogle Scholar
  3. [1]
    J.L. Lions and E. Magenes — Problèmes aux limites non homogènes et applications. Dunod, Vol. 1, 2 (1968), Vol. 3 (1970).MATHGoogle Scholar
  4. [1]
    O. Pironneau — Theis, Paris, 1976.Google Scholar

Bibliography of Chapter IV

  1. [1]
    C. Baiocchi and M.S. Baouendi — Singular evolution equations. To appear.Google Scholar
  2. [1]
    M.S. Baouendi and P. Grivard — Sur une equation d’évolution changeant de type. J.F.A. (1969).Google Scholar
  3. [1]
    R. Bellman, R. Kalaba and G.M. Wing — Invariant imbedding and Mathematical Physics. J. Math. Phy. Vol. 1, 1960, p. 280–308.MathSciNetMATHCrossRefGoogle Scholar
  4. [1]
    J.L. Lions — Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, 1968.MATHGoogle Scholar
  5. [1]
    G. Talenti — Equations paraboliques “en avant-en arrière”. Colloque Int. CNRS, Pub. SMF,Astorique 2,3, 1973, p. 292–304.MathSciNetGoogle Scholar
  6. [1]
    M.B. Bernardi — Su alcune equazioni d’evoluzione Singolari. Boll. U.M.I. 13-B (1976), p. 1–20.MathSciNetGoogle Scholar
  7. [1]
    R. Beals — An abstract approach to some scattering and transport problems. To appear.Google Scholar
  8. [1]
    J. Cooper — J.M.A.A. (1969). In connection with this reference cf. also.Google Scholar
  9. [1]
    T. Kate — Proc, Japan Acad. (1973).Google Scholar
  10. [1]
    Mc Intosh. To appear.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1977

Authors and Affiliations

  • J. L. Lions
    • 1
  1. 1.Collège de France and LaboriaFrance

Personalised recommendations