Advertisement

Crystallographic Studies of Valinomycin and A23187

  • G. David Smith
  • William L. Duax
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 9-1)

Abstract

Ionophores are a class of antibiotics which are capable of transporting ions across synthetic and biological membranes. Great differences in molecular composition are observed since these antibiotics may be linear or cyclic compounds and may be either polyethers or polypeptides. Ion specificity is also found to show a considerable variation.

Keywords

Torsion Angle Coordinate Form Carbonyl Oxygen Atom Carboxyl Oxygen Atom Calcium Ionophore A23187 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Case, G.D., Vanderkooi, J.M., and Scarpa, A.: 1974, Physical Properties of Biological Membranes Determined by the Fluorescence of the Calcium Ionophore A23187, Arch. Biochem. Biophys. 162, 174–185.CrossRefGoogle Scholar
  2. Chaney, M.O., Demarco, P.V., Jones, N.D., and Occolowitz, J.L.: 1974, The Structure of A23187, a Divalent Cation Ionphore, J. Am. Chem. Soc. 96, 1932–1933.CrossRefGoogle Scholar
  3. Chaney, M.O., Jones, N.D., and Debono, M.: 1976, The Structure of the Calcium Complex of A23187, a Divalent Cation Ionophore, J. Antibiotics 29, 424–427.Google Scholar
  4. DeCamp, W.H.: 1973, Probability Plot Comparison of Crystallographically Independent Molecules, Acta Cryst. A29, 148–150.Google Scholar
  5. Dobler, M.: 1972, The Crystal Structure of Nonactin, Helv. Chim. Acta 55, 1371–1384.CrossRefGoogle Scholar
  6. Dobler, M. and Phizackerely, R.P.: 1974, The Crystal Structure of the NaNCS Complex of Nonactin, Helv. Chim. Acta 57, 664–674.CrossRefGoogle Scholar
  7. Duax, W.L., Hauptman, H., Weeks, CM., and Norton, D.A.: 1972, Valinomycir Crystal Structure Determination by Direct Methods, Science 176, No. 4037, 911–914.CrossRefGoogle Scholar
  8. Grenier, G., Van Sande, J., Glick, D., and Dumont, J.W.: 1974, Effect of Ionophore A23187 on Thyroid Secretion, FEBS Letters 49, 96–99.CrossRefGoogle Scholar
  9. Iitaka, Y., Sakamaki, T., and Nawata, Y.: 1972, Molecular Structures of Tetranactin and Its Alkali Metal Ion Complexes, Chem. Lett. (Tokyo), 1225-1230.Google Scholar
  10. Karl, R.C., Zawalich, W.S., Ferrendelli, J.A., and Matochinski, F.M.: 1975, The Role of Ca+2 and Cyclic Adenosine 3’:5’-Monophosphate in Insulin Release Induced in Vitro by the Divalent Cation Ionophore A23187, J. Biol. Chem. 250, 4575–4579.Google Scholar
  11. Karle, I.L.: 1975, Conformation of Valinomycin in a Triclinic Crystal Form, J. Amer. Chem. Soc. 97, 4379–4386.CrossRefGoogle Scholar
  12. Krasne, S., Eisenman, G., and Szabo, G.: 1971, Freezing and Melting of Lipid Bilayers and the Mode of Action of Nonactin, Valinomycin, and Gramicidin, Science 174, 412–415.Google Scholar
  13. Lutz, W.K., Winkler, F.K., and Dunitz, J.D.: 1971, Crystal Structure of the Antibiotic Monensin. Similarities and Differences between Free Acid and Metal Complex, Helv. Chim. Acta 54, 1103–1108.CrossRefGoogle Scholar
  14. Maigret, B. and Pullman, B.: 1975, Etudes quantiques sur la conformation de 1a valinomycine et de ses elements constitutifs, Theoret. Chim. Acta (Berl.) 37, 17–36.CrossRefGoogle Scholar
  15. Nawata, Y., Sakamaki, T., and Iitaka, Y.: 1974, The Crystal and Molecular Structures of Tetranactin, Acta Cryst. B30, 1047–1953.Google Scholar
  16. Neupert-Laves, K. and Dobler, M.: 1975, The Crystal Structure of a K Complex of Valinomycin, Helv. Chim. Acta 58, 432–442.CrossRefGoogle Scholar
  17. Patel, D.J. and Tonelli, A.E.: 1973, Solvent-Dependent Conformations of Valinomycin in Solution, Biochem. 12, 486–495.CrossRefGoogle Scholar
  18. Pinkerton, M., Steinrauf, L.K., and Dawkins, P.: 1969, The Molecular Structure and Some Transport Properties of Valinomycin, Biochem. Biophys. Res. Comm. 35, 512–518.CrossRefGoogle Scholar
  19. Pinkerton, M. and Steinrauf, L.K.: 1970, Molecular Structure of Monovalent Metal Cation Complexes of Monensin, J. Mol. Biol. 49, 533–546.CrossRefGoogle Scholar
  20. Rothschild, K.J., Asher, I.M., Anastassakis, E., and Stanley, H.E.: 1973, Raman Spectroscopic Evidence for Two Conformations of Uncomplexed Valinomycin in the Solid State, Science 182, 384–386.CrossRefGoogle Scholar
  21. Smith, G.D. and Duax, W.L.: 1976, The Crystal and Molecular Structure of the Calcium Ionophore A23187, J. Amer. Chem. Soc. 98, 1578–1580.CrossRefGoogle Scholar
  22. Smith, G.D., Duax, W.L., Langs, D.A., DeTitta, G.T., Edmonds, J.W., Rohrer, D.C., and Weeks, CM.: 1975, The Crystal and Molecular Structure of the Triclinic and Monoclinic Forms of Valinomycin, C54H90N6O18, J. Amer. Chem. Soc. 97, 7242–7247.CrossRefGoogle Scholar
  23. Tosteson, D.C., Cook, P., Andreoli, T., and Tieffenberg, M.: 1967, The Effect of Valinomycin on Potassium and Sodium Permeability of HK and LK Sheep Red Cells, J. Gen. Physiol. 50, 2513–2525.CrossRefGoogle Scholar
  24. Urry, D.W. and Kumar, N.G.: 1974, Affirmation of Critical Proton Magnetic Resonance Data on the Solution Conformation of the Valinomycin-Potassium Ion Complex, Biochem. 13, 1829–1831.CrossRefGoogle Scholar
  25. Wipf, von H.-K., Olivier, A., and Simon, W.: 1970, Mechanisms and Selektivität des Alkali-Ionentransportes in Modell-Membranen in Gegenwart des Antibioticums Valinomycin, Helv. Chim. Acta 53, 1605–1608.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • G. David Smith
    • 1
  • William L. Duax
    • 1
  1. 1.Medical Foundation of BuffaloBuffaloUSA

Personalised recommendations