Metal Complexes in Proteins

  • Lyle H. Jensen
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 9-1)


The metalloproteins are widely distributed in living systems, and they function in key cellular processes. The metal complexes which characterize these proteins have been studied by a variety of physical methods, and the complete three-dimensional structures of a number of metalloproteins have been determined by single crystal, X-ray analysis. The electron density maps on which the X-ray models are based seldom reach atomic resolution, however, and important structural features of the complexes may not be clear in the maps. The purpose of this account is to indicate the detail that can be visualized at several resolutions, to summarize the structural information on complexes in metalloproteins that have been studied by single crystal, X-ray methods, and to discuss and compare the complexes in several iron proteins.


Protein Side Chain Iron Protein Clostridium Pasteurianum Cold Spring Harbor Symposium Horse Liver Alcohol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adman, E.T., Sieker, L.C., and Jensen, L.H.: 1073, The structure of a Bacterial Ferredoxin, J. Biol. Chem., 248, 3987–3996.Google Scholar
  2. Adman, E.T., Watenpaugh, K.D., and Jensen, L.H.: 1975, NH…S Hydrogen Bonds in Peptococcus aerogenes Ferredoxin, Clostridium pasteurianum Rubredoxin, and Chromatium High Potential Iron Protein, Proc. Nat. Acad. Sci. U.S.A. 72, 4854–4858.CrossRefGoogle Scholar
  3. Adman, E.T., Sieker, L.C., and Jensen, L.H.: 1976, Structure of P. aerogenes Ferredoxin: Refinement at 2 Å Resolution, J. Biol. Chem. 251, 3801–3806.Google Scholar
  4. Arnone, A., Bier, C.J., Cotton, F.A., Day, V.W., Hazen, Jr., E.E., Richardson, D.C., Richardson, J.S., and in part, Yonath, A.: 1971, A High Resolution Study of an Inhibitor Complex of the Extracellular Nuclease of Staphylococus aureus, J. Biol. Chem., 246, 2302–2316.Google Scholar
  5. Ashida, T., Tanaka, N., Yamane, T., Tsukihara, T., and Kakudo, M.: 1973. The Crystal Structure of Bonito (Katsuo) Ferrocytochrome c at 2.3 Å Resolution, J. Biol. Chem. 73, 463–465.Google Scholar
  6. Blundel, T.L., Cutfield, J.F., Dodson, E.J., Dodson, G.G., Hodgkin, D.C., and Mercola, D.A.: 1971, The Crystal Structure of Rhombohedral 2 Zinc Insulin, Cold Spring Harbor Symposia on Quantitative Biology, voL XXXVI, pp. 233–241.Google Scholar
  7. Bode, W. and Schwager, P.: 1975, The Refined Crystal Structure of Bovine 3-Trypsin at 1.8 Å Resolution, J. Molecular Biol. 98., 693–717.CrossRefGoogle Scholar
  8. Cammack, R.: 1973, ‘Super-Reduction of Chromatium High Potential Iron-Sulfur Protein in the Presence of Dimethyl Sulfoxide’, Biochem. Biophys. Res. Commun. 54, 548–554.CrossRefGoogle Scholar
  9. Carter, Jr., C.W., Kraut, J., Freer, S.T., Alden, R.A., Sieker, L.C., Adman, E., and Jensen, L.H.: 1972, ‘A Comparison of Fe4S4 * Clusters in High-Potential Iron Protein and in Ferredoxin’, Proc. Nat. Acad. Sci. U.S.A. 69, 3526–3529.CrossRefGoogle Scholar
  10. Carter, Jr., C.W., Kraut, J., Freer, S.T., Xuong, N., Alden, R.A., and Bartsch, R.G.: 1974a, ‘Two-Ångstrom Crystal Structure of Oxidized Chromatium High Potential Iron Protein’, J. Biol. Chem. 249, 4212–4225.Google Scholar
  11. Carter, Jr., C.W., Kraut, J., Freer, S.T., and Alden, R.A.: 1974b: ‘Comparison of Oxidation-Reduction Site Geometries in Oxidized and Reduced Chromatium High Potential Iron Protein and Oxidized Peptococcus aerogenes Ferredoxin’ 249, 6339–6346.Google Scholar
  12. Coleman, P.M., Jansonius, J.N., and Matthews, B.W.: 1972 ‘The Structure of Thermolysin: An Electron Density Map at 2.3 Å Resolution’, J. Molecular Biol. 70, 701–724.CrossRefGoogle Scholar
  13. Dickerson, R.E., Tanako, T., Eisenberg, D., Kalli, O.B., Samson, L., Cooper, A., and Margoliash, E.: 1971 ‘Ferricytochrome c I’, J. Biol. Chem. 246, 1511–1535.Google Scholar
  14. Edelman, G.M., Cunningham, B.A., Reeke, Jr., G.N., Becker, J.W., Waxdal, M.J., and Wang, J.L.: 1972, ‘The Covalent and Three-Dimensional Structure of Concanavalin A’, Proc. Nat. Acad. Sci., U.S.A. 69, 2580–2584.CrossRefGoogle Scholar
  15. Eklund, H., Nordström, B., Zeppezauer, E., Söderland, G., Ohlsson, I., Boiwe, T., Söderberg, B.-O., Tapia, O., and Bränden, C.-I.: 1976, ‘The Three-Dimensional Structure of Horse Liver Alcohol Dehydrogenase at 2.4 A Resolution’, J. Molecular Biol., in press.Google Scholar
  16. Fenna, R.E. and Matthews, B.W.: 1975, ‘Chlorophyll Arrangement in a Bacteriochlorophyll Protein from Chlorobium limicola’, Nature 258, 573–577.CrossRefGoogle Scholar
  17. Freer, S.T., Alden, R.A., Carter, Jr., C.W., and Kraut, J.: 1975, ‘Crystallographic Structure Refinement of Chromatium High Potential Iron Protein at Two Ångstrom Resolution’, J. Biol. Chem. 250, 46–54.Google Scholar
  18. Hendrickson, W.A., Klippenstein, G.L., and Ward, K.B.: 1975, ‘Tertiary Structure of Myohemerythrin at Low Resolution’, Proc. Nat. Acad. Sci., U.S.A. 72, 2160–2164.CrossRefGoogle Scholar
  19. Hendrickson, W.A. and Ward, K.B.: 1975, ‘Atomic Models for the Polypeptide Backbones of Myohemerythrin and Hemerythrin’, Biochem. Biophys. Res. Commun. 66, 1349–1356.CrossRefGoogle Scholar
  20. Herriot, J.R., Sieker, L.C., Jensen, L.H., and Lovenberg, W.: 1970, ‘Structure of Rubredoxin: An X-ray Study to 2.5 Å Resolution’, J. Molecular Biol. 50, 391–406.CrossRefGoogle Scholar
  21. Herskovitz, T., Averill, B.A., Holm, R.H., Ibers, J.A., Phillips, W.D., and Weiher, J.F.: 1972, ‘Structure and Properties of a Synthetic Analogue of Bacterial Iron-Sulfur Proteins’, Proc. Nat. Acad. Sci., U.S.A. 69, 2437–2441.CrossRefGoogle Scholar
  22. Huber, R., Epp, O., and Formanek, H.: 1969, ‘The Environment of the Haem Group in Erythrocruorin (Chironomus thummi)’, J. Molecular Biol. 42 591–594.CrossRefGoogle Scholar
  23. Huber, R., Epp, O., and Formanek, H.: 1970, ‘Structures of Deoxy-and Carbonmonoxy Erythrocruorin’, J. Molecular Biol. 52, 349–354.CrossRefGoogle Scholar
  24. James, R.W.: 1948, ‘False Detail in Three-Dimensional Fourier Representations of Crystal Structures’, Acta Crystallographica 1, 132–134.CrossRefGoogle Scholar
  25. Jensen, L.H.: 1974, ‘Protein Model Refinement Based on X-ray Data’, Ann. Rev. Biophys. Bioengin. 3, 81–93.CrossRefGoogle Scholar
  26. Kendrew, J.C.: 1962, ‘Side-Chain Interactions in Myoglobin’, Brookhaven Symposia in Biology, No. 15, 216–228.Google Scholar
  27. Kendrew, J.C.: 1963, ‘Myoglobin and the Structure of Proteins’, Science 139, 1259–1266.CrossRefGoogle Scholar
  28. Klippenstein, G.L., Holleman, J.W., and Klotz, I.M.: 1968, ‘The Primary Structure of Golfingia gouldii Hemerythrin. Order of Peptides in Fragments Produced by Tryptic Digestion of Succinylated Hemerythrin. Complete Amino Acid Sequence’, Biochem. 7, 3868–3878.CrossRefGoogle Scholar
  29. Kretsinger, R.H. and Nuckolds, C.E.: 1973, ‘Carp Muscle Calcium-Binding Protein’ J. Biol. Chem. 248, 3313–3326.Google Scholar
  30. Liljas, A., Kannan, K.K., Bergsten, P-C., Waara, I., Friborg, K., Strandberg, B., Carlstrom, U., Jäpur, L., Lövgren, S., and Petef, M.: 1972, ‘The Crystal Structure of Human Carbonic Anhydrase C.’, Nature, New Biology 235, 131–137.Google Scholar
  31. Lipscomb, W.N.: 1971, ‘Structures and Mechanisms of Enzymes’, The Robert A. Welch Foundation Conferences on Chemical Research, vol. XV, pp. 131–182.Google Scholar
  32. Mathews, F.S., Argos, P., and Levine, M.: 1971 ‘The Structure of Cyto-chrome b5 at 2.0 A Resolution’, Cold Spring Harbor Symposium on Quantitative Biology, vol. XXXVI, pp. 387–395.Google Scholar
  33. Perutz, M.F.: 1969, ‘The Haemoglobin Molecule’, Proc. Roy. Soc., B 173, 113–140.CrossRefGoogle Scholar
  34. Pulsinelli, P.D., Perutz, M.F., and Nagel, R.L.: 1973, ‘Structure of Hemoglobin M Boston, a Variant with a Five-Coordinated Ferric Herne’, Proc. Nat. Acad. Sci., U.S.A. 70, 3870–3874.CrossRefGoogle Scholar
  35. Richardson, J.S., Thomas, K.A., Rubin, B.H., and Richardson, D.C.: 1975, ‘Crystal Structure of Bovine Cu, Zn Superoxide Dismutase at 3 A Resolution: Chain Tracing and Metal Ligands’, Proc. Nat. Acad. Sci., U.S.A. 72, 1349–1353.CrossRefGoogle Scholar
  36. Salemme, F.R., Freer, S.T., Xuong, Ng.H., Alden, R.A., and Kraut, J.: 1973, ‘The Structure of the Oxidized Cytochrome c2 of Rhodospirillum rubrum’, J. Biol. Chem. 248, 3910–3921.Google Scholar
  37. Sieker, L.C., Adman, E., and Jensen, L.H.: 1972, ‘Structure of the Fe-S Complex in a Bacterial Ferredoxin’, Nature 235, 40–42.CrossRefGoogle Scholar
  38. Stenkamp, R.E., Sieker, L.C., Jensen, L.H., and Loehr, J.S.: 1976a, ‘Structure of Methemerythrin at 5 Å resolution’, J. Molecular Biol. 100, 23–34.CrossRefGoogle Scholar
  39. Stenkamp, R.E., Sieker, L.C., and Jensen, L.H.: 1976b, ‘Structure of the Iron Complex in Methemerythrin’, Proc. Nat. Acad. Sci., U.S.A. 73, 349–351.CrossRefGoogle Scholar
  40. Ward, K.B., Hendrickson, W.A., and Klippenstein, G.L.: 1975, ‘Quaternary and Tertiary Structure of Hemerythrin’, Nature 257, 818–821.CrossRefGoogle Scholar
  41. Watenpaugh, K.D., Sieker, L.C., Herriott, J.R., and Jensen, L.H.: 1971, ‘The Structure of a Non-Heme Iron Protein: Rubredoxin at 1,5 Å Resolution’, Cold Spring Harbor Symposia on Quantitative Biology, vol. XXXVI, pp. 359–367.Google Scholar
  42. Watenpaugh, K.D., Sieker, L.C., Herriott, J.R., and Jensen, L.H.: 1973, ‘Refinement of the Model of a Protein: Rubredoxin at 1.5 Å Resolution’, Acta Crystallographica B29, 943–956.Google Scholar
  43. Watson, H.C.: 1969, ‘The Stereochemistry of the Protein Myoglobin’, Progr. Stereochem. 4, 299–333. London, Butterworth.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • Lyle H. Jensen
    • 1
  1. 1.Dept. of Biochemistry and Dept. of Biological StructureUniversity of WashingtonSeattleUSA

Personalised recommendations