Skip to main content

Open Magnetosphere and the Auroral Oval

  • Chapter
  • 137 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 47))

Abstract

The impact of a unidirectionally streaming, unmagnetized plasma upon a dipole field was first studied by Chapman and Ferraro in a series of papers in 1931–33. The front of the stream was assumed to be an infinite plane or a cylindrical surface. Later, their study was extended by Zhigulev and Romishevskii (1960), Hurley (1961a, b) and Dungey (1961a) for a two-dimensional dipole and by Beard (1960, 1967), Midgley and Davis (1963) and Mead and Beard (1964) for a three-dimensional dipole.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarsnes, K. and Amundsen, R.: 1972, ‘North/South Asymmetric Entry of Solar Protons during the November 18, 1968 Event’, Planet Space Sci. 20, 1835.

    ADS  Google Scholar 

  • Akasofu, S.-I.: 1960, ‘Large-Scale Auroral Motions and Polar Magnetic Disturbance at about 1100 hours on 23 September 1957’, J. Atmospheric Terrestr. Phys. 19, 10.

    Google Scholar 

  • Akasofu, S.-I.: 1966, ‘The Auroral Oval, the Auroral Substorm and their Relations with the Internal Structure of the Magnetosphere’, Planet. Space Sci. 14, 587.

    ADS  Google Scholar 

  • Akasofu, S.-I.: 1974a, ‘A Study of Auroral Displays Photographed from the DMSP-2 Satellite and from the Alaska Meridian Chain of Stations’, Space Sci. Rev. 16, 617.

    ADS  Google Scholar 

  • Akasofu, S.-I.: 1974b, ‘The Aurora and the Magnetosphere: The Chapman Memorial Lecture’, Planet. Space Sci. 22, 885.

    ADS  Google Scholar 

  • Akasofu, S.-I.: 1975, ‘The Solar Wind-Magnetosphere Dynamo and the Magnetospheric Substorm’, Planet. Space Sci. 23, 817.

    ADS  Google Scholar 

  • Alfvén, H.: 1968, ‘Some Properties of Magnetospheric Neutral Surfaces’, J. Geophys. Res. 73, 4379.

    ADS  Google Scholar 

  • Alksne, A. Y. and Webster, D. L.: 1970, ‘Magnetic and Electric Fields in the Magnetosheath’, Planet. Space Sci. 18, 1203.

    ADS  Google Scholar 

  • Anderson, K. A. and Lin, R. P.: 1969, ‘Observation of Interplanetary Field Lines in the Magnetotail’, J. Geophys. Res. 74, 3953.

    ADS  Google Scholar 

  • Anderson, H. R. and Vondrak, R. K.: 1975, ‘Observations of Birkeland Currents at Auroral Latitudes’, Rev. Geophys. Space Phys. 13, 243.

    ADS  Google Scholar 

  • Armstrong, J. C. and Zmuda, A. J.: 1970, ‘Field-Aligned Current at 1100 km in the Auroral Region Measured by Satellite’, J. Geophys. Res. 75, 7122.

    ADS  Google Scholar 

  • Armstrong, J. C. and Zmuda, A. J.: 1973, ‘Triaxial Magnetic Measurements of Field-Aligned Currents at 800 Kilometers in the Auroral Region: Initial Results’, J. Geophys. Res. 78, 6802.

    ADS  Google Scholar 

  • Armstrong, J. C. Akasofu, S.-I. and Rostoker, G.: 1975, ‘A Comparison of Satellite Observations of Birkeland Currents with Ground Observations of Visible Aurora and Ionospheric Currents’, J. Geophys. Res. 80, 575.

    ADS  Google Scholar 

  • Arnoldy, R. L.: 1974, ‘Auroral Particle Precipitation and Birkeland Currents’, Rev. Geophys. Space Phys. 12, 217.

    ADS  Google Scholar 

  • Atkinson, G.: 1975, ‘Equations for Magnetospheric Convection and a Solution for Polar Cap Flows’, J. Geophys. Res. 80, 32.

    ADS  Google Scholar 

  • Axford, W. I. and Hines, C. O.: 1961, ‘A Unifying Theory of High-Latitude Geophysical Phenomena and Geomagnetic Storms’, Can. J. Phys. 39, 1433.

    MathSciNet  ADS  Google Scholar 

  • Banks, P. M.: 1972, ‘Behavior of Thermal Plasma in the Magnetosphere and Top-Side Ionosphere’, Presented at the COSPAR Symposium on “Critical Problems in Magnetospheric Physics”, Madrid, Spain, May 10–12.

    Google Scholar 

  • Banks, P. M. and Doupnik, J. R.: 1975, ‘A Review of Auroral Zone Electrodynamics Deduced from Incoherent Scatter Radar Observations’, J. Atmosph. Terr. Phys. 37, 951.

    ADS  Google Scholar 

  • Beard, D. B.: 1960, ‘The Interaction of the Terrestrial Magnetic Field with the Solar Corpuscular Radiation’, J. Geophys. Res. 65, 3559.

    ADS  Google Scholar 

  • Beard, D. B.: 1967, ‘The solar wind’, Rep. Prog. Phys. 30, 409.

    ADS  Google Scholar 

  • Berko, F. W.: 1973, ‘Distributions and Characteristics of High-Latitude Field Aligned Electron Precipitation’, J. Geophys. Res. 78, 1615.

    ADS  Google Scholar 

  • Berko, F. W., Hoffman, R. A., Burton, R. K. and Holzer, R. E.: 1975, ‘Simultaneous Particle and Field Observations of Field-Aligned Currents’, J. Geophys. Res. 80, 37.

    ADS  Google Scholar 

  • Block, L. P. and Carpenter, D. L.: 1974, ‘Derivation of Magnetospheric Electric Fields from Whistler Data in a Dynamic Geomagnetic Field’, J. Geophys. Res. 79, 2783.

    ADS  Google Scholar 

  • Boström, R. A.: 1964, ‘A Model of the Auroral Electrojets’, J. Geophys. Res. 69, 4983.

    ADS  MATH  Google Scholar 

  • Boström, R. A.: 1968, ‘Currents in the Ionosphere and Magnetosphere’, Ann. Geophys. 24, 681.

    Google Scholar 

  • Boström, R. A.: 1975, ‘Mechanisms for Driving Birkeland Currents’, Physics of the Hot Plasma in the Magnetosphere, p. 341, B. Hultqvist and L. Stenflo (eds.), Plenum Press, New York.

    Google Scholar 

  • Buchau, J., Whalen, J. A. and Akasofu, S.-I.: 1970, ‘On the Continuity of the Auroral Oval’, J. Geophys. Res. 75, 7147.

    ADS  Google Scholar 

  • Cambou, F. and Galperin, Yu. I.: 1974, ‘Resultats d’Ensemble Obtenus Grace a l’Experience ARCAD a Bord du Satellite AUREOLE’, Ann. Geophys. 30, 9.

    Google Scholar 

  • Carpenter, D. L.: 1970, ‘Whistler Evidence of the Dynamic Behavior of the Dusk Side Bulge in the Plasmasphere’, J. Geophys. Res. 75, 3837.

    ADS  Google Scholar 

  • Carpenter, D. L. and Stone, K.: 1967, ‘Direct Detection by a Whistler Method of the Magnetospheric Electric Field Associated with a Polar Substorm’, Planet. Space Sci. 15, 395.

    ADS  Google Scholar 

  • Carpenter, D. L., Stone, K., Siren, J. C. and Crystal, T. L.: 1972, ‘Magnetospheric Electric Fields Deduced from Drifting Whistler Paths’, J. Geophys. Res. 77, 2819.

    ADS  Google Scholar 

  • Carpenter, L. A. and Kirchhoff, V. W. J. H.: 1975, ‘Comparison of High-Latitude and Mid-Latitude Ionospheric Electric Fields’, J. Geophys. Res. 80, 1810.

    ADS  Google Scholar 

  • Cauffman, D. P. and Gurnett, D. A.: 1971, ‘Double-Probe Measurements of Convection Electric Fields with the INJUN-5 Satellite’, J. Geophys. Res. 76, 6014.

    ADS  Google Scholar 

  • Cooper, W. A. and Haskell, G. P.: 1972, ‘Anisotropy of Low-Energy Solar Protons at the Boundary of the Magnetotail’, J. Geophys. Res. 77, 6849.

    ADS  Google Scholar 

  • Coroniti, F. V. and Kennel, C. F.: 1973, ‘Can the Ionosphere Regulate Magnetospheric Convection?’, J. Geophys. Res. 78, 2837.

    ADS  Google Scholar 

  • Cowley, S. W. H.: 1971, ‘The Adiabatic Flow Model of a Neutral Sheet’, Cosmic Electrodynamics 2, 90.

    Google Scholar 

  • Cowley, S. W. H.: 1973, ‘A Self-Consistent Model of a Simple Magnetic Neutral Sheet System Surrounded by Cold, Collisionless Plasma’, Cosmic Electrodynamics 3, 448.

    Google Scholar 

  • Davis, T. N.: 1971, ‘Magnetospheric Convection Pattern Inferred from Magnetic Disturbance and Auroral Motions’, J. Geophys. Res. 76, 5978.

    ADS  Google Scholar 

  • Dessler, A. J.: 1968, ‘Magnetic Merging in the Magnetospheric Tail’, J. Geophys. Res. 73, 209.

    ADS  Google Scholar 

  • Dessler, A. J.: 1971, ‘Vacuum Merging: A Possible Source of the Magnetospheric Cross-Tail Electric Field’, J. Geophys. Res. 76, 3174.

    ADS  Google Scholar 

  • Doupnik, J. R., Banks, P. M., Baron, M. J., Rino, C. L. and Petriceks, J.: 1972, ‘Direct Measurements of Plasma Drift Velocities at High Magnetic Latitudes’, J. Geophys. Res. 77, 4268.

    ADS  Google Scholar 

  • Dungey, J. W.: 1961a, ‘The Steady State of the Chapman-Ferraro Problem in Two Dimensions’, J. Geophys. Res. 66, 1043.

    ADS  Google Scholar 

  • Dungey, J. W.: 1961b, ‘Interplanetary Magnetic Field and the Auroral Zones’, Phys. Rev. Lett. 6, 47.

    ADS  Google Scholar 

  • Durney, A. C. and Morfill, G. E.: 1972, ‘Entry of Energetic Solar Protons into the Tail’, Earth’s Magnetospheric Processes, B. M. McCormac (ed.), p. 101, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Durney, A. C., Morfill, G. E. and Quenby, J. J.: 1972, ‘Entry of High-Energy Solar Protons into the Distant Geomagnetic Tail’, J. Geophys. Res. 77, 3345.

    ADS  Google Scholar 

  • Engelmann, J.: 1972, ‘Solar Particle Injection at Medium Energies (25 < E < 250 MeV)’, Earth’s Magnetospheric Processes, B. M. McCormac (ed.), p. 95, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Engelmann, J., Hynds, R. J., Morfill, G., Axisa, F., Bewick, A., Durney, A. C. and Koch, L.: 1971, ‘Penetration of Solar Protons over the Polar Cap during the February 25, 1969 Event’, J. Geophys. Res. 76, 4245.

    ADS  Google Scholar 

  • Evans, L. C. and Stone, E. C.: 1972: ‘Electron Polar Cap and the Boundary of Open Geomagnetic Field Lines’, J. Geophys. Res. 77, 5580.

    ADS  Google Scholar 

  • Fahleson, U. V., Kelley, M. C. and Mozer, F. S.: 1970, ‘Investigation of the Operation of a D.C. Electric Field Detector’, Planet. Space Sci. 18, 1551.

    ADS  Google Scholar 

  • Fairfield, D. H.: 1968, ‘Simultaneous Measurements on Three Satellites and the Observation of the Geomagnetic Tail at 1000 R E ’, J. Geophys. Res. 73, 6179.

    ADS  Google Scholar 

  • Fanselow, J. L. and Stone, E. C: 1972, ‘Geomagnetic Cutoffs for Cosmic-Ray Protons for Seven Energy Intervals between 1.2 and 39 MeV’, J. Geophys. Res. 77, 3999.

    ADS  Google Scholar 

  • Fejer, J. A.: 1963, ‘Theory of Auroral Electrojets’. J. Geophys. Res. 68, 2147.

    ADS  Google Scholar 

  • Feldstein, Y. L: 1963, ‘Some Problems Concerning the Morphology of Auroras and Magnetic Disturbances at High Latitudes’, Geomagn. Aeron. 3, 183.

    MathSciNet  Google Scholar 

  • Feldstein, Y. L: 1973, ‘Auroral Oval’, J. Geophys. Res. 78, 1210.

    ADS  Google Scholar 

  • Feldstein, Y. I. and Starkov, G. V.: 1970, ‘The Auroral Oval and the Boundary of Closed Field Lines of Geomagnetic Field’, Planet. Space Sci. 18, 501.

    ADS  Google Scholar 

  • Feldstein, Y. I. and Zaitzev, A. N.: 1967, ‘Magnetic Field Variations at High Latitudes on Quiet Days in Summer during the IGY’, Geomag. Aeronom. 7, 160

    Google Scholar 

  • Feldstein, Y. I. and Zaitzev, A. N.: 1968, ‘Quiet and Disturbed Solar-Daily Variations of Magnetic Field at High Latitudes during the IGY’, Tellus 20, 338.

    ADS  Google Scholar 

  • Fennell, J. F.: 1973, ‘Access of Solar Protons to the Earth’s Polar Caps’, J. Geophys. Res. 78, 1036.

    ADS  Google Scholar 

  • Flindt, H. R.: 1970, ‘Local-Time Dependence of Geomagnetic Cutoffs for Solar Protons, 0.52 ≤ Ep ≤ 4 MeV’, J. Geophys. Res. 75, 39.

    ADS  Google Scholar 

  • Föppl, H., Haerendel, G., Haser, L., Lust, R., Melzner, F., Meyer, B., Neuss, H., Rabben, H. H., Rieger, E., Stöcker, J. and Stoffregen, W.: 1968, ‘Preliminary Results of Electric Field Measurements in the Auroral Zone’, J. Geophys. Res. 73, 21.

    ADS  Google Scholar 

  • Freeman, J. W. Jr.: 1968, ‘Observation of Flow of Low-Energy Ions at Synchronous Altitude and Implications for Magnetospheric Convection’, J. Geophys. Res. 73, 4151.

    ADS  Google Scholar 

  • Freeman, J. W. Jr.: 1974, ‘Kp Dependence of the Plasma Sheet Boundary’, J. Geophys. Res. 79, 4315.

    ADS  Google Scholar 

  • Fukao, S. and Tsuda, T.: 1973, ‘On the Reconnection of Magnetic Lines of Force’, J. Plasma Phys. 9, 409.

    ADS  Google Scholar 

  • Fukushima, N.: 1975, ‘Field-Aligned Current as a Possible Source for ΔB Observed by Low-Altitude Satellites’, Rep. Ionosph. and Space Res. Japan 29, 51.

    ADS  Google Scholar 

  • Fukushima, N. and Kamide, Y.: 1973, ‘Contribution of Magnetospheric Field-Aligned Current to Geomagnetic Bays and Sq Fields: A Comment on Partial Ring-Current Models’, Radio Sci. 8, 1013.

    ADS  Google Scholar 

  • Fukushima, N. and Kawasaki, K.: 1974, ‘A Simplified Model of Field-Aligned Current Sheet Pairs along the Auroral Oval in Connection with Geomagnetic S pq -Field’, Rep. Ionosph. Space Res. Japan 28, 83.

    ADS  Google Scholar 

  • Gall, R.: 1968, ‘Daily Variation of the Asymptotic Directions of Cosmic Rays’, J. Geophys. Res. 73, 4400.

    ADS  Google Scholar 

  • Gall, R. and Bravo, S.: 1973, ‘Role of the Neutral Sheet in the Illumination of Polar Caps by Solar Protons’, J. Geophys. Res. 78, 6773.

    ADS  Google Scholar 

  • Gall, R., Bravo, S. and Orozco, A.: 1972, ‘Model for the Uneven Illumination of Polar Caps by Solar Protons’, J. Geophys. Res. 77, 5360.

    ADS  Google Scholar 

  • Gall, R., Jimenez, J. and Camacho, L.: 1968, ‘Arrival of Low-Energy Cosmic Rays via the Magnetospheric Tail’, J. Geophys. Res. 73, 1593.

    ADS  Google Scholar 

  • Galperin, Yu. I., Ponomarev, V. N. and Zosimova, A. G.: 1973a, ‘Direct Measurements of Ion Drift Velocity in the Upper Ionosphere during a Magnetic Storm, 1. Experiment Description and Some Results of Measurements during Magnetically Quiet Time’, Cosmicheski Issledovanija 11, 273.

    ADS  Google Scholar 

  • Galperin, Yu. I., Ponomarev, V. N. and Zosimova, A. G.: 1973b, ‘Direct Measurements of Ion Drift Velocity in the Upper Ionosphere during a Magnetic Storm, 2. Results of Measurements during the November 3, 1967 Magnetic Storm’, Cosmicheski Issledovanija 11, 284.

    ADS  Google Scholar 

  • Galperin, Yu. I., Ponomarev, V. N. and Zosimova, A. G.: 1974, ‘Plasma Convection in Polar Ionosphere’, Ann. de Geophys. 30, 1.

    Google Scholar 

  • Gonzalez, W. D.: 1973, ‘A Quantitative Three-Dimensional Model for Magnetopause Reconnection’, Dissertation Doctor of Philosophy in Physics, U. of Calif., Berkeley.

    Google Scholar 

  • Gonzalez, W. D. and Mozer, F. S.: 1974, ‘A Quantitative Model for the Potential Resulting from Reconnection with an Arbitrary Interplanetary Magnetic Field’, J. Geophys. Res. 79, 4186.

    ADS  Google Scholar 

  • Gueth, K., Hoerner, V. and Brommundt, G.: 1974, ‘The Determination of Ionospheric Plasma Drifts by a Rocket-Borne Electrostatic Flux Meter’, Planet. Space Sci. 22, 1131.

    ADS  Google Scholar 

  • Gurnett, D. A.: 1970, ‘Satellite Measurements of D.C. Electric Fields in the Ionosphere’, Particles and Fields in the Magnetosphere, B. M. McCormac (ed.), p. 239, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Gurnett, D. A.: 1972a, ‘Injun 5 Observations of Magnetospheric Electric Fields and Plasma Convection’, Earth’s Magnetospheric Process, B. M. McCormac (ed.), p. 233. D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Gurnett, D. A.: 1972b, ‘Electric Field and Plasma Observations in the Magnetosphere’, Critical Problems of Magnetospheric Physics, Proceedings of the Joint COSPAR/AGA/URSI Symposium, Madrid, Spain, 11–13 May 1972, 123.

    Google Scholar 

  • Haerendel, G.: 1972, ‘Plasma Drifts in the Auroral Ionosphere Derived from Barium Releases’, Earth’s Magnetospheric Processes, B. M. McCormac (ed.), p. 246, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Haerendel, G. and Lüst, R.: 1970, ‘Electric Fields in the Ionosphere and Magnetosphere’, Particles and Fields in the Magnetosphere, B. M. McCormac (ed.), p. 213, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Haerendel, G., Hedgecock, P. C. and Akasofu, S.-I.: 1971, ‘Evidence of Magnetic Field Aligned Currents during the Substorms of March 18, 1969’, J. Geophys. Res. 76, 2382.

    ADS  Google Scholar 

  • Hasegawa, M.: 1940, ‘Provisional Report of the Statistical Study on the Diurnal Variations of Terrestrial Magnetism in the North Polar Regions’, Trans. Washington Meeting, I. U.G.G.-A.T.M.E., Bull. No. 11, 311, A. H. R. Goldie (ed.), Edinburg.

    Google Scholar 

  • Heelis, R. Burch, J. and Hanson, W.: 1976, ‘Ion Convection Velocity Reversals in the Dayside Cleft’, J. Geophys. Res. 81 (in press).

    Google Scholar 

  • Heikkila, W. J.: 1974, ‘Outline of a Magnetospheric Theory’, J. Geophys. Res. 79, 2496.

    ADS  Google Scholar 

  • Heikkila, W. J.: 1976, ‘Objection to the Reconnection Model for Magnetospheric Phenomena’, Space Sci. Rev. (in press).

    Google Scholar 

  • Heppner, J. P.: 1972a, ‘Electric Fields in the Magnetosphere’, Goddard Space Flight Center, X-645–72–154, May.

    Google Scholar 

  • Heppner, J. P.: 1972b, ‘Electric Field Variations during Substorms: OGO-6 Measurements’, Planet. Space Sci. 20, 1475.

    ADS  Google Scholar 

  • Heppner, J. P.: 1972c, ‘The Harang Discontinuity in Auroral Belt Ionospheric Currents’, Geofysiske Publikasjoner 29, 105.

    Google Scholar 

  • Heppner, J. P., Stolarik, J. D. and Wescott, E. M.: 1971, ‘Electric-Field Measurements and the Identification of Currents Causing Magnetic Disturbances in the Polar Cap’, J. Geophys. Res. 76, 6028.

    ADS  Google Scholar 

  • Hurley, J.: 1961a, ‘Interaction of a Streaming Plasma with the Magnetic Field of a Line Current’, Phys. Fluids 4, 109.

    MathSciNet  ADS  Google Scholar 

  • Hurley, J.: 1961b, ‘Interaction of a Streaming Plasma with the Magnetic Field of a Two-Dimensional Dipole’, Phys. Fluids 4, 854.

    MathSciNet  ADS  Google Scholar 

  • Iijima, T. and Kokubun, S.: 1973, ‘Geomagnetic S pq Variation on an Extremely Quiet Day’, Rep. Ionosph. Space Res. Japan 27, 195.

    Google Scholar 

  • Innanen, W. G. and Van Allen, J. A.: 1973, ‘Anisotropics in the Interplanetary Intensity of Solar Protons Ep > 0.3 MeV’, J. Geophys. Res. 78, 1019.

    ADS  Google Scholar 

  • Intriligator, D. S., Wolfe, J. H., McKibbin, D. D. and Collard, H. R.: 1969, ‘Preliminary Comparison of Solar Wind Plasma Observations in the Geomagnetospheric Wake at 1000 and 500 Earth Radii’, Planet. Space Sci. 17, 321.

    ADS  Google Scholar 

  • Intriligator, D. S., Wolfe, J. H. and McKibbin, D. D.: 1972, ‘Simultaneous Solar-Wind Plasma and Magnetic-Field Measurements in the Expected Region of the Extended Geomagnetic Tail’, J. Geophys. Res. 77, 4645.

    ADS  Google Scholar 

  • Jaggi, R. K. and Wolf, R. A.: 1973, ‘Self-Consistent Calculation of the Motion of a Sheet of Ions in the Magnetosphere’. J. Geophys. Res. 78, 2852.

    ADS  Google Scholar 

  • Jeffries, R. A., Roach, W. H., Hones, E. W. Jr., Wescott, E. M., Stenbaek-Nielsen, H. C., Davis, T. N. and Winningham, J. D.: 1975, ‘Two Barium Plasma Injections into the Northern Magnetospheric Cleft’, Geophys. Res. Letters 2, 285.

    ADS  Google Scholar 

  • Kamide, F. and Akasofu, S.-I.: 1976, ‘The Location of the Field-Aligned Currents with Respect to Discrete Auroral Arcs’, J. Geophys. Res. 81, 3999.

    ADS  Google Scholar 

  • Kan, J. R. and Akasofu, S.-I.: 1974, ‘A Model of the Open Magnetosphere’, J. Geophys. Res. 79, 1379.

    ADS  Google Scholar 

  • Kavanagh, L. D. Jr., Freeman, J. W. Jr. and Chen, A. J.: 1968, ‘Plasma Flow in the Magnetosphere’, J. Geophys. Res. 73, 5511.

    ADS  Google Scholar 

  • Kawasaki, K. and Akasofu, S.-I.: 1967, ‘Polar Solar Daily Geomagnetic Variations on Exceptionally Quiet Days’, J. Geophys. Res. 72, 5363.

    ADS  Google Scholar 

  • Kawasaki, K. and Akasofu, S.-I.: 1972, ‘Geomagnetic Disturbances in the Polar Cap: S pq and DP-2’, Planet. Space Sci. 20, 1163.

    ADS  Google Scholar 

  • Kawasaki, K. and Akasofu, S.-I.: 1973, ‘A Possible Current System Associated with the S pq Variation’, Planet. Space Sci. 21, 329.

    ADS  Google Scholar 

  • Kawasaki, K. and Fukushima, N.: 1975, ‘Derivation of Field-Aligned Current Distribution from Scalar B Observed by Low-Altitude Satellites’, Rep. Ionosph. and Space Res. Japan 29, 58.

    ADS  Google Scholar 

  • Kelley, M. C. and Mozer, F. S.: 1975, ‘Simultaneous Measurement of the Horizontal Components of the Earth’s Electric Field in the Atmosphere and in the Ionosphere’, J. Geophys. Res. 80, 3275.

    ADS  Google Scholar 

  • Kelley, M. C., Mozer, F. S. and Fahleson, U. V.: 1971, ‘Electric Fields in the Nighttime and Daytime Auroral Zone’, J. Geophys. Res. 76, 6054.

    ADS  Google Scholar 

  • Kelley, M. C., Haerendel, G., Kappler, H., Mozer, F. S. and Fahleson, U. V.: 1975, ‘Electric Field Measurements in a Major Magnetospheric Substorm’, J. Geophys. Res. 80, 3181.

    ADS  Google Scholar 

  • Knudsen, W. C.: 1974, ‘Magnetospheric Convection and the High-Latitude F2 Ionosphere’, J. Geophys. Res. 79, 1046.

    ADS  Google Scholar 

  • Kropotkin, A. P.: 1971, ‘Reconnection of the Lines of Force of the Interplanetary Magnetic Field and of the Geomagnetic Tail’, Geomag. Aeronom. 11, 902.

    ADS  Google Scholar 

  • Krylov, A. L. and Shcherbakov, V. P.: 1972, ‘Equations of Potential Electric Fields in the Earth’s Magnetosphere and Ionosphere’, Geomag. Aeronom. 12, 189.

    ADS  Google Scholar 

  • Langel, R. A.: 1974a, ‘Near-Earth Magnetic Disturbance in Total Field at High Latitudes, I, Summary of Data from Ogo 2, 4, and 6’, J. Geophys. Res. 79, 2363.

    ADS  Google Scholar 

  • Langel, R. A.: 1974b, ‘Near-Earth Magnetic Disturbance in Total Field at High Latitudes, 2, Interpretation of Data from Ogo 2, 4, and 6’, J. Geophys. Res. 79, 2373.

    ADS  Google Scholar 

  • Lassen, K.: 1972, ‘On the Classification of High-Latitude Auroras’, Geofysiske Publikasjoner 29, 87.

    Google Scholar 

  • Lloyd, K. H. and Haerendel, G.: 1973, ‘Numerical Modeling of the Drift and Deformation of Ionospheric Plasma Clouds and of their Interaction with Other Layers of the Ionosphere’, J. Geophys. Res. 78, 7389.

    ADS  Google Scholar 

  • Lui, A. T. Y. and Anger, C. D.: 1973, ‘A Uniform Belt of Diffuse Auroral Emission Seen by the ISIS-2 Scanning Photometer’, Planet, Space Sci. 21, 799.

    ADS  Google Scholar 

  • Lui, A. T. Y., Anger, C. D., Venkatesan, D., Sawchuk, W. and Akasofu, S.-I.: 1975, ‘The Topology of the Auroral Oval as Seen by the ISIS-2 Scanning Auroral Photometer’, J. Geophys. Res. 80, 1795.

    ADS  Google Scholar 

  • Lyatskiy, W. B., Mal’tsev, Yu. P. and Leont’yev, S. V.: 1974, ‘Three-Dimensional Current System in Different Phases of a Substorm’, Planet. Space Sci. 22, 1231.

    ADS  Google Scholar 

  • Mal’tsev, Yu. P.: 1974, ‘The Effect of Ionospheric Conductivity on the Convection System in the Magnetosphere’, Geomag. Aeronom. 14, 128.

    ADS  Google Scholar 

  • Mariani, F. and Ness, N. F.: 1969, ‘Observations of the Geomagnetic Tail at 500 Earth Radii by Pioneer 8’, J. Geophys. Res. 74, 5633.

    ADS  Google Scholar 

  • Maynard, N. C.: 1974, ‘Electric Field Measurements across the Harang Discontinuity’, J. Geophys. Res. 79, 4620.

    ADS  Google Scholar 

  • Maynard, N. C. and Heppner, J. P.: 1970, ‘Variations in Electric Fields from Polar Orbiting Satellites’, Particles and Fields in the Magnetosphere, B. M. McCormac (ed.), p. 247, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • McCoy, J. E., Lin, R. P., McGuire, R. E., Chase, L. M. and Anderson, K. A.: 1975, ‘Magnetotail Electric Fields Observed from Lunar Orbit’, J. Geophys. Res. 80, 3217.

    ADS  Google Scholar 

  • McDiarmid, I. B. and Burrows, J. R.: 1969, ‘Relation of Solar Proton Latitude Profiles to Outer Radiation Zone Electron Measurements’, J. Geophys. Res. 74, 6239.

    ADS  Google Scholar 

  • McDiarmid, I. B. and Burrows, J. R.: 1970, ‘Latitude Profiles of Low-Energy Solar Electrons’, J. Geophys. Res. 75, 3910.

    ADS  Google Scholar 

  • McDiarmid, I. B., Burrows, J. R. and Wilson, M. D.: 1974, ‘Solar Proton Flux Enhancements at Auroral Latitudes’, J. Geophys. Res. 79, 1099.

    ADS  Google Scholar 

  • McIlwain, C. E.: 1972, ‘Plasma Convection in the Vicinity of the Geosynchronous Orbit’, Earth’s Magnetospheric Processes, B. M. McCormac (ed.), p. 268, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • McIlwain, C. E.: 1974, ‘Substorm Injection Boundaries’, Magnetospheric Physics, B. M. McCormac (ed.), p. 143, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Mead, G. D. and Beard, D. B.: 1964, ‘Shape of the Geomagnetic Field Solar Wind Boundary’, J. Geophys. Res. 69, 1169.

    ADS  MATH  Google Scholar 

  • Mendillo, M. and Papagiannis, M. D.: 1971, ‘Estimate of the Dependence of the Magnetospheric Electric Field on the Velocity of the Solar Wind’, J. Geophys. Res. 76, 6939.

    ADS  Google Scholar 

  • Michel, F. C. and Dessler, A. J.: 1975, ‘On the Interpretation of Low-Energy Particle Access to the Polar Caps’, J. Geophys. Res. 80, 2309.

    ADS  Google Scholar 

  • Midgley, J. E. and Davis, L. Jr.: 1963, ‘Calculation by a Moment Technique of the Perturbation of the Geomagnetic Field by the Solar Wind’, J. Geophys. 68, 5111.

    ADS  Google Scholar 

  • Mikkelsen, I. S., Jørgensen, T. S. and Kelley, M. C: 1975, ‘Observation and Interpretation of Plasma Motions in the Polar Cap Ionosphere during Magnetic Substorms’, J. Geophys. Res. 80, 3197.

    ADS  Google Scholar 

  • Morfill, G. E.: 1973, ‘Non Adiabatic Particle Motion in the Magnetosphere’, J. Geophys. Res. 78, 588.

    ADS  Google Scholar 

  • Morfill, G. E. and Quenby, J. J.: 1971, ‘The Entry of Solar Protons over the Polar Caps’, Planet. Space Sci. 19, 1541.

    ADS  Google Scholar 

  • Morfill, G. and Scholer, M.: 1972a, ‘Reconnection of the Geomagnetic Tail Deduced from Solar-Particle Observations’, J. Geophys. Res. 77, 4021.

    ADS  Google Scholar 

  • Morfill, G. and Scholer, M.: 1972b, ‘Solar Proton Intensity Structures in the Magnetosphere during Interplanetary Anisotropics’, Planet. Space Sci. 20, 2113.

    ADS  Google Scholar 

  • Morfill, G. and Scholer, M.: 1973a, ‘Uneven Illumination of the Polar Caps by Solar Protons: Comparison of Different Particle Entry Models’, J. Geophys. Res. 78, 5449.

    ADS  Google Scholar 

  • Morfill, G. and Scholer, M.: 1973b, ‘Study of the Magnetosphere Using Energetic Solar Particles’, Space Sci. Rev. 15, 267.

    ADS  Google Scholar 

  • Mozer, F. S.: 1972, ‘Simultaneous Electric-Field Measurements on Nearby Balloons’, J. Geophys. Res. 77, 6129.

    ADS  Google Scholar 

  • Mozer, F. S.: 1973a, ‘Analyses of Techniques for Measuring D.C. and A.D. Electric Fields in the Magnetosphere’, Space Sci. Rev. 14, 272.

    ADS  Google Scholar 

  • Mozer, F. S.: 1973b, ‘On the Relationship between the Growth and Expansion Phases of Substorms and Magnetospheric Convection’, J. Geophys. Res. 78, 1719.

    ADS  Google Scholar 

  • Mozer, F. S.: 1973c, ‘Electric Fields and Plasma Convection in the Plasmasphere’, Rev. Geophys. Space Phys. 11, 755.

    ADS  Google Scholar 

  • Mozer, F. S. and Gonzalez, W. D.: 1973, ‘Response of Polar Cap Convection to the Interplanetary Magnetic Field’, J. Geophys. Res. 78, 6784.

    ADS  Google Scholar 

  • Mozer, F. S. and Lucht, P.: 1974, ‘The Average Auroral Zone Electric Field’, J. Geophys. Res. 79, 1001.

    ADS  Google Scholar 

  • Mozer, F. S. and Manka, R. H.: 1971, ‘Magnetospheric Electric Field Properties Deduced from Simultaneous Balloon Flights’, J. Geophys. Res. 76, 1697.

    ADS  Google Scholar 

  • Mozer, F. S. and Serlin, R.: 1969, ‘Magnetospheric Electric Field Measurements with Balloons’, J. Geophys. Res. 74, 4739.

    ADS  Google Scholar 

  • Mozer, F. S., Serlin, R., Carpenter, D. L. and Siren, J.: 1974, ‘Simultaneous Electric Field Measurements near L = 4 from Conjugate Balloons and Whistlers’, J. Geophys. Res. 79, 3215.

    ADS  Google Scholar 

  • Nagata, T. and Kokubun, S.: 1962, ‘An Additional Geomagnetic Daily Variation Field (S pq Field) in the Polar Region on Geomagnetically Quiet Day’, Rep. Ionosph. Res. Japan 16, 256.

    Google Scholar 

  • Ness, N. F., Scearce, C. S. and Cantarano, S.: 1967, ‘Probable Observations of the Geomagnetic Tail at 103 Earth Radii by Pioneer 7’, J. Geophys. Res. 72, 3769.

    ADS  Google Scholar 

  • Nielsen, E. and Pomerantz, M. A.: 1975, ‘Access of Solar Electrons to the Polar Regions’, Planet. Space Sci. 23, 945.

    ADS  Google Scholar 

  • Nishida, A.: 1966, ‘Formation of Plasmapause, or Magnetospheric Plasma Knee by the Combined Action of Magnetosphere Convection and Plasma Escape from the Tail’, J. Geophys. Res. 71, 5669.

    ADS  Google Scholar 

  • Nishida, A.: 1971, ‘Interplanetary Origin of Electric Fields in the Magnetosphere’, Cosmic Electrodynamics 2, 350.

    Google Scholar 

  • Nishida, A. and Kokubun, S.: 1971, ‘New Polar Magnetic Disturbances: S pq SP, DPC, and DP2’, Rev. Geophys. Space Phys. 9, 417.

    ADS  Google Scholar 

  • Nishida, A. and Maezawa, K.: 1971, ‘Two Basic Modes of Interaction Between the Solar Wind and the Magnetosphere’, J. Geophys. Res. 76, 2254.

    ADS  Google Scholar 

  • Ogawa, T., Tanaka, Y., Huzita, A. and Yasuhara, M.: 1975, ‘Horizontal Electric Fields in the Middle Latitude’, Planet. Space Sci. 23, 825.

    ADS  Google Scholar 

  • Osipov, N. K. and Pavlov, Ye. Ye.: 1971, ‘Structure of the Geomagnetic Field and Currents in the Magnetosphere’, Geomag. Aeronom. 11, 483.

    ADS  Google Scholar 

  • Oya, H.: 1975, ‘Plasma Flow Hypothesis in the Magnetosphere Relating to Frequency Shift of Electrostatic Plasma Waves’, J. Geophys. Res. 80, 2783.

    ADS  Google Scholar 

  • Page, D. E. and Domingo, V.: 1972, ‘New Results on Particle Arrival at the Polar Caps’, Earth’s Magnetospheric Processes, B. M. McCormac (ed.), p. 107, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Palmer, I. D., Higbie, P. R. and Hones, E. W. Jr.: 1976, ‘Gradients of Solar Protons in the High Latitude Magnetotail and the Magnetospheric Electric Field’, J. Geophys. Res. 81.

    Google Scholar 

  • Parker, E. N.: 1957a, ‘Newtonian Development of the Dynamical Properties of Ionized Gases of Low Density’, Phys. Rev. 107, 924.

    MathSciNet  ADS  MATH  Google Scholar 

  • Parker, E. N.: 1957b, ‘Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids’, J. Geophys. Res. 62, 509.

    ADS  Google Scholar 

  • Parker, E. N.: 1963, ‘The Solar-Flare Phenomenon and the Theory of Reconnection and Annihilation of Magnetic Fields’, Astrophys. J., Suppl. 77, 8, 177.

    ADS  Google Scholar 

  • Paulikas, G. A., Blake, J. B. and Vampola, A. L.: 1970, ‘Solar Particle Observations over the Polar Caps’, Particles and Fields in the Magnetosphere, B. M. McCormic (ed.), p. 141, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Petschek, H. E.: 1964, ‘Magnetic Field Annihilation, AAS-NASA Symposium on the Physics of Solar Flares’, NASA Spec. Publ. SP-50, 425.

    Google Scholar 

  • Piddington, J. H.: 1963, ‘Theories of the Geomagnetic Storm Main Phase’, Planet. Space Sci. 11, 1277.

    ADS  Google Scholar 

  • Piddington, J. H.: 1965, ‘The Morphology of Auroral Precipitation’, Planet. Space Sci. 13, 565.

    ADS  Google Scholar 

  • Potter, W. E.: 1970, ‘Rocket Measurements of Auroral Electric and Magnetic Fields’, J. Geophys. Res. 75, 5415.

    ADS  Google Scholar 

  • Potter, W. E. and Cahill, L. J. Jr.: 1969, ‘Electric and Magnetic Field Measurements Near an Auroral Electrojet’, J. Geophys. Res. 74, 5159.

    ADS  Google Scholar 

  • Pudovkin, M. I.: 1974, ‘Electric Fields and Currents in the Ionosphere’, Space Sci. Rev. 16, 727.

    ADS  Google Scholar 

  • Quenby, J. J.: 1972, ‘Magnetospheric Field Fluctuations and the Penetration of Solar Protons to Low Geomagnetic Latitude’, Planet. Space Sci. 20, 1979.

    ADS  Google Scholar 

  • Roederer, J. G. and Hones, E. W. Jr.: 1970, ‘Electric Field in the Magnetosphere as Deduced from Asymmetries in the Trapped Particle Flux’, J. Geophys. Res. 75, 3923.

    ADS  Google Scholar 

  • Rostoker, G. and Boström, R.: 1974, ‘A Mechanism for Driving the Gross Birkeland Current Configuration in the Auroral Oval’, Rep. TRITA-EPP-74–25, Dept. Plasma Phys. Royal Inst. Tech. Stockholm, Sweden.

    Google Scholar 

  • Rostoker, G., Chen, A. J., Yasuhara, F., Akasofu, S.-I. and Kawasaki, K.: 1974, ‘High Latitude Equivalent Current Systems During Extremely Quiet Times’, Planet. Space Sci. 22, 427.

    ADS  Google Scholar 

  • Rostoker, G., Armstrong, J. C. and Zmuda, A. J.: 1975, ‘Field-Aligned Current Flow Associated with Intrusion of the Substorm-Intensified Westward Electrojet into the Evening Sector’, J. Geophys. Res. 80, 3571.

    ADS  Google Scholar 

  • Sato, T.: 1974, ‘Possible Sources of Field-Aligned Currents’, Rep. Ionosph. and Space Res., Japan 28, 179.

    ADS  Google Scholar 

  • Schield, M. A., Freeman, J. W. and Dessler, A. J.: 1969, ‘A Source for Field-Aligned Currents at Auroral Latitudes’, J. Geophys. Res. 74, 247.

    ADS  Google Scholar 

  • Scholer, M.: 1972, ‘Polar-Cap Structures of Solar Protons Observed during the Passage of Interplanetary Discontinuities’, J. Geophys. Res. 77, 2762.

    ADS  Google Scholar 

  • Scholer, M.: 1975, ‘Solar Protons on Closed Magnetospheric Field Lines after an Interplanetary Flux Decrease’, Planet. Space Sci. 23, 1445.

    ADS  Google Scholar 

  • Scholer, M. and Morfill, G.: 1972, ‘Persistent Particle Anistropies and Magnetospheric Models’, Planet. Space Sci. 20, 1051.

    ADS  Google Scholar 

  • Scholer, M. and Morfill, G.: 1974, ‘On the Topology of the Geomagnetic Field’, Magnetospheric Physics, B. M. McCormac (ed.), p. 61, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Scholer, M., Häusler, B. and Hovestadt, D.: 1972, ‘Non-Uniform Entry of Solar Protons into the Polar Cap’, Planet. Space Sci. 20, 271.

    ADS  Google Scholar 

  • Shabansky, V. P.: 1971, ‘Some Processes in the Magnetosphere’, Space Sci. Rev. 12, 299.

    ADS  Google Scholar 

  • Siscoe, G. L.: 1966, ‘A Unified Treatment of Magnetospheric Dynamics with Applications to Magnetic Storms’, Planet. Space Sci. 14, 947.

    ADS  Google Scholar 

  • Siscoe, G. L. and Cummings, W. D.: 1969, ‘On the Cause of Geomagnetic Bays’, Planet. Space Sci. 17, 1795.

    ADS  Google Scholar 

  • Sonnerup, B. U. O.: 1970, ‘Magnetic-Field Re-Connexion in a Highly Conducting Incompressible Fluid’, J. Plasma Phys. 4, 161.

    ADS  Google Scholar 

  • Sonnerup, B. U. O.: 1972, ‘Magnetic Field Reconnection and Particle Acceleration’, Invited paper, presented at the NASA Symposium on High-Energy Phenomena on the Sun, Sept. 28–30, Goddard Space Flight Center.

    Google Scholar 

  • Sonnerup, B. U. O.: 1974a, ‘Magnetopause Reconnection Rate’, J. Geophys. Res. 79, 1546.

    ADS  Google Scholar 

  • Sonnerup, B. U. O.: 1974b, ‘The Reconnecting Magnetosphere’, Magnetospheric Physics, B. M. McCormac (ed.), p. 23, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Speiser, T. W.: 1965, ‘Particle Trajectories in a Model Current Sheet, Based on the Open Model of the Magnetosphere, with Applications to Auroral Particles’, J. Geophys. Res. 70, 1717.

    ADS  Google Scholar 

  • Speiser, T. W.: 1967, ‘Particle Trajectories in Model Current Sheets, 2. Applications to Auroras Using a Geomagnetic Tail Model’, J. Geophys. Res. 72, 3919.

    ADS  Google Scholar 

  • Speiser, T. W.: 1970, ‘Conductivity without Collisions or Noise’, Planet. Space Sci. 18, 613.

    ADS  Google Scholar 

  • Stern, D. P.: 1973, ‘A Study of the Electric Field in an Open Magnetospheric Model’, J. Geophys. Res. 78, 7292.

    ADS  Google Scholar 

  • Stern, D. P.: 1975, ‘A Secondary Source of Electric Field in the Magnetosphere’, Goddard Space Flight Center, X-602–75–17, January.

    Google Scholar 

  • Stone, E. C.: 1964, ‘Local Time Dependence of Non-Störmer Cutoff for 1.5 MeV Protons in Quiet Geomagnetic Field’, J. Geophys. Res. 69, 3577.

    ADS  Google Scholar 

  • Sugiura, M.: 1975, ‘Identifications of the Polar Cap Boundary and the Auroral Belt in the High-Altitude Magnetosphere: A Model for Field-Aligned Currents’, J. Geophys. Res. 80, 2057.

    ADS  Google Scholar 

  • Sweet, P. A.: 1969, ‘Mechanisms of Solar Flares’, Ann. Rev. Astron. Astrophys. 7, 149.

    ADS  Google Scholar 

  • Swift, D. W.: 1967, ‘Possible Consequences of the Asymmetric Development of the Ring Current Belt’, Planet. Space Sci. 15, 835.

    ADS  Google Scholar 

  • Swift, D. W.: 1971, ‘Possible Mechanisms for Formation of the Ring Current Belt’, J. Geophys. Res. 76, 2276.

    ADS  Google Scholar 

  • Swift, D. W. and Gurnett, D. A.: 1973, ‘Direct Comparison between Satellite Electric Field Measurements and the Visible Aurora’, J. Geophys. Res. 78, 7306.

    ADS  Google Scholar 

  • Theile, B. and Praetorius, H. M.: 1973, Field-Aligned Currents between 400 and 3000 km in Auroral and Polar Latitudes, Planet. Space Sci. 21, 179.

    ADS  Google Scholar 

  • Turtle, J. P., Oelbermann, E. J. Jr., Blake, J. B., Lanzerotti, L. J., Vampola, A. L. and Yates, G. K.: 1972, ‘Rapid Access of Solar Electrons to the Polar Caps’, J. Geophys. Res. 77, 730.

    ADS  Google Scholar 

  • Vampola, A. L.: 1969, ‘Energetic Electrons at Latitudes above the Outer-Zone Cutoff’, J. Geophys. Res. 74, 1254.

    ADS  Google Scholar 

  • Vampola, A. L.: 1971, ‘Access of Solar Electrons to Closed Field Lines’, J. Geophys. Res. 76, 36.

    ADS  Google Scholar 

  • Vampola, A. L.: 1973, ‘Solar Electron Access to the Magnetosphere’, Aerospace Report No. TR-0074(4260–20)-5, August 24.

    Google Scholar 

  • Van Allen, J. A.: 1970, ‘On the Electric Field in the Earth’s Distant Magnetotail’, J. Geophys. Res. 75, 29.

    ADS  Google Scholar 

  • Van Allen, J. A., Fennel, J. F. and Ness, N. F.: 1971, ‘Asymmetric Access of Energetic Solar Protons to the Earth’s North and South Polar Caps’, J. Geophys. Res. 76, 4262.

    ADS  Google Scholar 

  • Vasyliunas, V. M.: 1968, ‘A Crude Estimate of the Relation between the Solar Wind Speed and the Magnetospheric Electric Field’, J. Geophys. Res. 73, 2529.

    ADS  Google Scholar 

  • Vasyliunas, V. M.: 1970, ‘Mathematical Models of Magnetospheric Convection and its Coupling to the Ionosphere’, Particles and Fields in the Magnetosphere, B. M. McCormac (ed.), p. 60, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Vasyliunas, V. M.: 1972, ‘The Interrelationship of Magnetospheric Processes’, Earth’s Magnetospheric Processes, B. M. McCormac (ed.), p. 29, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Vasyliunas, V. M.: 1975, ‘Theoretical Models of Magnetic Field Line Merging’, 1, Rev. Geophys. Space Phys. 13, 303.

    ADS  Google Scholar 

  • Walker, R. C., Villante, U. and Lazarus, A. J.: 1975, ‘Pioneer 7 Observations of Plasma Flow and Field Reversal Regions in the Distant Geomagnetic Tail’, J. Geophys. Res. 80, 1238.

    ADS  Google Scholar 

  • Wescott, E. M., Stolarik, J. D. and Heppner, J. P.: 1969, ‘Electric Fields in the Vicinity of Auroral Forms from Motions of Barium Vapor Releases’, J. Geophys. Res. 74, 3469.

    ADS  Google Scholar 

  • Wescott, E. M., Stolarik, J. D. and Heppner, J. P.: 1970, ‘Auroral and Polar Cap Electric Fields from Barium Releases’, Particles and Fields in the Magnetosphere, B. M. McCormac (ed.), p. 229, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Whalen, B. A., Green, D. W. and McDiarmid, I. B.: 1974, ‘Observations of Ionospheric Ion Flow and Related Convective Electric Fields in and near the Auroral Arc’, J. Geophys. Res. 79, 2835.

    ADS  Google Scholar 

  • Whalen, B. A., Verschell, H. J. and McDiarmid, I. B.: 1975, ‘Correlations of Ionospheric Electric Fields and Energetic Particle Precipitation’, J. Geophys. Res. 80, 2137.

    ADS  Google Scholar 

  • Wolf, R. A.: 1970, ‘Effects of Ionospheric Conductivity on Convective Flow of Plasma in the Magnetosphere’, J. Geophys. Res. 75, 4677.

    ADS  Google Scholar 

  • Wolf, R. A.: 1974, ‘Calculations of Magnetospheric Electric Fields’, Magnetospheric Physics, B. M. McCormac (ed.), p. 167, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Wolf, R. A.: 1975, ‘Ionosphere-Magnetosphere Coupling’, Space Sci. Rev. 17, 537.

    ADS  Google Scholar 

  • Yasuhara, F., Kamide, Y. and Akasofu, S.-I.: 1975, ‘Field-Aligned and Ionospheric Currents’, Planet. Space Sci. 23, 1355.

    ADS  Google Scholar 

  • Yeh, T. and Axford, W. I.: 1970, ‘On the Re-Connexion of Magnetic Field Lines in Conducting Fluids’, J. Plasma Phys. 4, 207.

    ADS  Google Scholar 

  • Zhigulev, V. N. and Romishevskii, E. A.: 1960, ‘Concerning the Interaction of Currents Flowing in a Conducting Medium with the Earth’s Magnetic Field’, Soviet Phys. Dokl. 4, 859.

    ADS  Google Scholar 

  • Zmuda, A. J. and Armstrong, J. C.: 1974a, ‘The Diurnal Flow Pattern of Field-Aligned Currents’, J. Geophys. Res. 79, 4611.

    ADS  Google Scholar 

  • Zmuda, A. J. and Armstrong, J. C.: 1974b, ‘The Diurnal Variation of the Region with Vector Magnetic Field Changes Associated with Field-Aligned Currents’, J. Geophys. Res. 79, 2501.

    ADS  Google Scholar 

  • Zmuda, A. J., Martin, J. H. and Heuring, F. T.: 1966, ‘Transverse Magnetic Disturbances at 1100 km in the Auroral Region’, J. Geophys. Res. 71, 5033.

    ADS  Google Scholar 

  • Zmuda, A. J., Armstrong, J. C. and Heuring, F. T.: 1970, ‘Characteristics of Transverse Magnetic Disturbances Observed at 1100 Kilometers in the Auroral Oval’, J. Geophys. Res. 75, 4757.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Akasofu, SI. (1977). Open Magnetosphere and the Auroral Oval. In: Physics of Magnetospheric Substorms. Astrophysics and Space Science Library, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1164-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1164-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1166-2

  • Online ISBN: 978-94-010-1164-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics