A Survey of the Theory of Post Algebras and Their Generalizations

  • PH. Dwinger
Part of the Episteme book series (EPIS, volume 2)

Abstract

In this article the historical development of the theory of Post algebras is presented. Various approaches to the theory of Post algebras are described with particular emphasis on recent development and recent results. The article also includes a rather extensive discussion of generalized Post algebras (Post algebras with infinite chains of constants) which have been studied in recent years.

Keywords

Topo Archie Blazer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balbes, R., ‘The Center of the Free Product of Distributive Lattices’, Proc. Amer. Math. Soc. 29 (1971), 434–436.CrossRefGoogle Scholar
  2. [2]
    Balbes, R. and Dwinger, Ph., ‘Uniqueness of Representations of Distributive Lattice as a Free Product of a Boolean Algebra and a Chain’, Colloq. Math. 24 (1971), 27–35.Google Scholar
  3. [3]
    Balbes, R. and Dwinger, Ph., ‘Coproducts of Boolean Algebras and Chains with Applications to Post Algebras’, Colloq. Math. 24 (1971), 15–25.Google Scholar
  4. [4]
    Balbes, R. and Dwinger, Ph., Distributive Lattices, University of Missouri Press, 1974.Google Scholar
  5. [4a]
    Beazer, P., ‘Post-Like Algebras and Injective Stone Algebras’, Algebra Universalis 5 (1975), 16–23.CrossRefGoogle Scholar
  6. [5]
    Bialynicki-Birula, A., ‘Remarks on Quasi-Boolean Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 5 (1957), 615–619.Google Scholar
  7. [6]
    Bialynicki-Birula, A. and Rasiowa, H., ‘On the Representation of Quasi-Boolean Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 5 (1957), 259–261.Google Scholar
  8. [7]
    Blazer, R., ‘Some Remarks on Post Algebras’, Colloq. Math. 29 (1974), 167–178.Google Scholar
  9. [8]
    Blok, W. J., ‘Generalized Post Algebras’, Masters Thesis, University of Amsterdam (1972).Google Scholar
  10. [9]
    Blok, W. J., ‘The Center of the Coproduct of Distributive Lattices with 0,1’, Nieuw. Archief, voor Wiskunde (to appear).Google Scholar
  11. [10]
    Chang, C. C. and Horn, A., ‘Prime Ideal Characterization of Generalized Post Algebras’, Proceedings of the Symposium on Pure Math., Amer. Math. Soc. 2 (1961), 43–48.Google Scholar
  12. [11]
    Cignoli, R ., ‘Moisil Algebras’ Notas de Logica Matematica, Instituto de Matematica Universidad del sur Bahia Blanca 27 (1970).Google Scholar
  13. [12]
    Cignoli, R., ‘Representation of Lukasiewicz Algebras and Post Algebras by Continuous Functions’, Colloq. Math. 24 (1972), 127–138.Google Scholar
  14. [13]
    Comer, S. and Dwinger, Ph., ‘Cancellation for Bounded Distributive Lattices’, Notices Amer. Math. Soc. 151 (1974), 44.Google Scholar
  15. [14]
    Dwinger, Ph., Introduction to Boolean Algebras, Physica Verlag, Wiirzburg, second edition, 1971.Google Scholar
  16. [15]
    Dwinger, Ph., ‘Notes on Post Algebras I and II’, Indag. Math. 28 (1966), 462–478.Google Scholar
  17. [16]
    Dwinger, Ph., ‘Generalized Post Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 6 (1968), 560–565.Google Scholar
  18. [17]
    Dwinger, Ph., ‘Ideals in Generalized Post Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 17 (1969), 483–486.Google Scholar
  19. [18]
    Dwinger, Ph., ‘Free Post Algebras and Coproducts of Post Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 535–537.Google Scholar
  20. [19]
    Epstein, G., ‘The Lattice Theory of Post Algebras’, Trans. Amer. Math. Soc. 95 (1960), 300–317.CrossRefGoogle Scholar
  21. [20]
    Epstein, G., ‘Multiple Valued Signal Processing with Limiting’, Symposium on multiple valued logic design, Buffalo, New York, 1972.Google Scholar
  22. [21]
    Epstein, G. and Horn, A., ‘P-Algebras, an Abstraction from Post Algebras’ (manuscript).Google Scholar
  23. [22]
    Epstein, G. and Horn, A., ‘Chain Based Lattices’ (manuscript).Google Scholar
  24. [22a]
    Epstein, G., ‘An Equational Axiomatisation for the Disjoint System of Post Algebras’, IEEE Trans, in Computers C-22 4 (1973), 422–423.Google Scholar
  25. [23]
    Georgescu, G., ‘Caracterisation des épimorphismes des algèbres de Lukasiewicz θ-valentes’, C. R. Acad. Sci. Paris Ser. A-B 271 (1970), A708–A710.Google Scholar
  26. [24]
    Georgescu, G. and Vraciu, C., ‘La dualité des algèbres de Post θ-valentes’, J. Algebra 21 (1972), 74–86.CrossRefGoogle Scholar
  27. [25]
    Grätzer, G., Universal Algebra, Van Nostrand, Princeton, 1968.Google Scholar
  28. [26]
    Grätzer, G., Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman Co., San Francisco, 1971.Google Scholar
  29. [27]
    Iturrioz, L. and Makinson, D., ‘Sur les filters premiers d’un treillis distributif et ses sous-treillis’, C. R. Acad. Sci. Paris 270 (1970), 575–577.Google Scholar
  30. [28]
    Kalman, J. A., ‘Lattices with Involution’, Trans. Amer. Math. Soc. 87 (1958), 485–491.CrossRefGoogle Scholar
  31. [29]
    Katrinàk, T. and Mitschke, A., ‘Stonesche Verbande der Ordnung n und Postalgebren’, Math. Ann. 199 (1972), 13–20.CrossRefGoogle Scholar
  32. [30]
    Moisil, G. C., ‘Recherches sur l’algebre de la logique’, Annates scientifiques de I’universite de Jassy 22 (1935), 1–117.Google Scholar
  33. [31]
    Monteiro, A., ‘Matrices de Morgan caractéristiques pour le calcul propositional classique’, An. Acad. Brasil Ci 52 (1960), 1–7.Google Scholar
  34. [32]
    Nerode, A., ‘Some Stone Spaces and Recursion Theory’, Duke Math. J. 26 (1959), 397–406.CrossRefGoogle Scholar
  35. [33]
    Post, E. L., ‘Introduction to a General Theory of Elementary Propositions’, Amer. J. Math. 43 (1921), 163–185.CrossRefGoogle Scholar
  36. [34]
    Rasiowa, H., ‘On Generalized Post Algebras of Order ω+ and ω+ Valued Predicate Calculi’, Bull, de I’acad. Polonaise des Sc. Ser. d. Sc. Math., Astronom. et Phys., vol. XXI, 3 (1973), 209–219.Google Scholar
  37. [35]
    Rosenbloom, P. C., ‘Post Algebras, I Postulates and General Theory’, Amer. J. Math. 64 (1942), 167–183.CrossRefGoogle Scholar
  38. [36]
    Rousseau, G., ‘Post Algebras and Pseudo-Post Algebras’, Fund. Math. 67 (1970), 133–145.Google Scholar
  39. [37]
    Saloni, Zygmunt, ‘A Topological Representation of Post Algebras and Free Post Algebras’, Colloq. Math. vol. XXXI, 1 (1974), 1–9.Google Scholar
  40. [38]
    Sawicka, H., ‘On Some Properties of Generalized Post Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 19 (1971), 267–269.Google Scholar
  41. [39]
    Sawicka, H., ‘On Some Properties of Post Algebras with Countable Chains of Constants’, Colloq. Math. 25 (1972), 201–209.Google Scholar
  42. [40]
    Sikorski, R., Boolean Algebras, Springer-Verlag (third ed.) New York, Berlin, Göttingen, Heidelberg, 1969.Google Scholar
  43. [41]
    Speed, T. P., ‘A Note on Post Algebras’, Colloq. Math. 24 (1971), 37–44.Google Scholar
  44. [42]
    Strecker, J., ‘The Strong Cancellation Property for the Free Product of Bounded Distributive Lattices’, Thesis, Vanderbilt University, 1974.Google Scholar
  45. [43]
    Traczyk, T., ‘Axioms and Some Properties of Post Algebras’, Colloq. Math. 10 (1963), 193–209.Google Scholar
  46. [44]
    Traczyk, T., ‘An Equational Definition of a Class of Post Algebras’, Bull. Acad. Polon Sci. Ser. Sci. Math. Astronom. Phys. 12 (1964), 147–150.Google Scholar
  47. [45]
    Traczyk, T., ‘A Generalization of the Loomis-Sikorski Theorem’. Colloq. Math. 12 (1964), 156–161.Google Scholar
  48. [46]
    Traczyk, T., ‘On Post Algebras with Uncountable Chain of Constants Algebras of Homomorphisms’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1967), 673–680.Google Scholar
  49. [47]
    Traczyk, T., ‘Prime Ideals in Generalized Post Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1968), 369–373.Google Scholar
  50. [48]
    Traczyk, T., ‘Some Theorems on Independence in Post Algebras’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963), 3–8.Google Scholar
  51. [49]
    Traczyk, T., ‘Weak Isomorphisms of Boolean Algebras and Post Algebras’, Colloq. Math. 13 (1964/1965), 159–164.Google Scholar
  52. [50]
    Wade, L. I., ‘Post Algebras and Rings’, Duke Math. J. 12 (1945), 389–395.CrossRefGoogle Scholar
  53. [51]
    Wlodarska, E., ‘On the Representation of Post Algebras Preserving Some Infinite Joins and Meets’, ibid. 18 (1970), 49–54.Google Scholar

Copyright information

© D. Reidel Publishing Company Dordrecht-Holland 1977

Authors and Affiliations

  • PH. Dwinger
    • 1
  1. 1.University of IllinoisChicagoUSA

Personalised recommendations