From Extremophiles to Astrobiology

  • Joseph Seckbach
  • Aharon Oren
Conference paper

Abstract

The 3.5 – 3.8 billion years during which Prokaryotes have lived on Earth have been sufficient time to evolve the characteristics necessary to colonize every habitat compatible with the stability of biomolecules. It has now been well established that diverse communities of microorganisms are able to thrive in very extreme niches on and below the global surface, habitats hostile to most other forms of life. Nearly all the extremophiles are Prokaryotes, small-sized microorganisms that have a very high rate of reproduction and a high degree of physiological flexibility. These characteristics enable their fast adaptation to various extreme habitats. Extremophiles grow at the various frontiers of life: at extreme levels of temperature (thermophiles and psychrophiles), pH (acidophiles and alkaliphiles), pressure (barophiles), dryness (xerophiles), hypersaline environments (halophiles) and high levels of radiation; many can live in the absence of molecular oxygen. These extremophiles provide us with excelle nt models for the study of biodiversity on Earth, for the formulation of theories on the origin of life, and for speculations on the possible existence of extraterrestrial microbes. More information on the extremophiles may be found in (1998), Madigan (in Seckbach 2000), Ollivier et al. (in Seckbach 2000), Oren (in Seckbach 2000), Rainey and Ward-Rainey (in Seckbach 2000), (Seckbach 1997, Seckbach 2000) and Seckbach and Oren (in Seckbach 2000). Below are a few examples of microorganisms living on the edge of life.

Keywords

Permeability Crystallization Sulfuric Acid Photosynthesis Boiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Allen, MB. (1959). Arch. Mikrobiol. 32, 270–277.CrossRefGoogle Scholar
  2. Beardall, J. and Entwisle, L. (1984) Phycologia 23, 397–399.CrossRefGoogle Scholar
  3. Brack, A. and Pillinger, C.T. (1998) Extremophiles 2, 313–319.CrossRefGoogle Scholar
  4. Brock, T.D. (1978) Thermophilic Microorganisms and Life at High Temperatures. Springer-Verlag, New York.CrossRefGoogle Scholar
  5. Darland, G. and Brock, T.D. (1971) J. Gen. Microbiol. 67, 9–15.Google Scholar
  6. Davies, P. (1999) The Fifth Miracle, Simon & Schuster, New York.Google Scholar
  7. Davis, J.S. (1972) The Biologist 54: 52–93.Google Scholar
  8. Hoham, R.W. and Duval, B. (2000) In: H.G. Jones, J.W. Pomeroy, D.A. Walker and R.W. Hoham (eds.) Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems, Cambridge University Press, Stanford, CA, pp. 166–226.Google Scholar
  9. Horikoshi, K. and Grant, W.D. (1998) Extremophiles, Microbial Life in Extreme Environments, Wiley-Liss Publishers, New York.Google Scholar
  10. Karl, D.M., Bird, D.F., Björkman, K., Houlihan, T., Shackelford, R. and Tupas, L. (1999) Science 286: 2144–2147.CrossRefGoogle Scholar
  11. Ling, H.U. (1996) Hydrobiologia 336, 99–106.CrossRefGoogle Scholar
  12. Madigan, M.T. and Oren, A. (1999) Curr. Opinion Microbiol. 2: 265–269.CrossRefGoogle Scholar
  13. McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.N., and Zare, R.N. (1996) Science 273: 924–930.ADSCrossRefGoogle Scholar
  14. Mitchell, F.J. and Ellis, W.L. (1971) In: A.A. Levinson (ed.) Proceedings of the Second Lunar Science Conference, vol. 3. The MIT press, Cambridge, MA. pp. 2721–2733.Google Scholar
  15. Phillips, C.B., McEwen, A.S., Hoppa, G.V., Fagents, S.A., Greeley, R., Klemaszewski, J.E., Pappalardo, R.T., Klaasen, K.P., and Breneman, H.H. (2000) J. Geophys. Res. Planets 105, 22579–22597.ADSCrossRefGoogle Scholar
  16. Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, CF., Kirshtein, J.D., and Avci, R. (1999) Science 286, 2141–2144.CrossRefGoogle Scholar
  17. Sasaki, H., Kataoka, H., Kamiya, M. and Kawai, H. (1999) J. Phycol. 35, 732–739.CrossRefGoogle Scholar
  18. Schleper, C., Punier, G, Kühlmorgen, B. and Zilllig, W. (1995) Nature 375, 741–742.ADSCrossRefGoogle Scholar
  19. Seckbach, J. (1994) (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer Academic Publishers, Dordrecht.Google Scholar
  20. Seckbach, J. (1997) In: C.B. Cosmovici, S. Bowyer and D. Wertheimer (eds.) Astronomical and Biochemical Origins and the Search for Life in the Universe. Editrice Compositori, Bologna, pp. 511–523.Google Scholar
  21. Seckbach, J. (1999) (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht.Google Scholar
  22. Seckbach, J. (2000) (ed.) Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  23. Steinberg, C.E.W., Schäfer and Beisker, W. (1998) Acta Hydrochim. Hydrobiol. 26, 13–19.CrossRefGoogle Scholar
  24. Stetter, K.O. (1998) In: K. Horikoshi and W.D. Grant (eds.) Extremophiles; Microbial Life in Extreme Environments. Wiley-Liss, Inc., New York, pp. 1–24.Google Scholar
  25. Vreeland, R.H., Rosenzweig, W.D. and Powers, D.W. (2000) Nature 407, 897–900.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Joseph Seckbach
    • 1
  • Aharon Oren
    • 2
  1. 1.EfratIsrael
  2. 2.Division of Microbial and Molecular Ecology, The Institute of Life Sciences, and The Moshe Shilo Minerva Center for Marine BiogeochemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations