Physics and Life

Lecture in honour of Abdus Salam
  • Paul Davies
Conference paper


Fifty years ago, physicists seemed on the verge of solving the problem of life. Inspired by Erwin Schrödinger’s book What is Life? (1944), researchers began unraveling the molecular basis of the living cell, in the belief that a solution to both the nature and the origin of life would soon be found. Today, these hopes seem very naive. Indeed, physics is regarded by most investigators as not especially relevant to the problem of life.


Quantum Information Processing Quantum Search Quantum Game Quantum Zeno Effect Brownian Ratchet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D., Davis, B. and Parrondo, J.M.R. (1999) The problem of detailed balance for the Feynman-Smoluchowski engine (FSE) and the multiple pawl paradox, in Proceedings of the Unsolved Problems of Noise (UpoN99), American Inst. Phys. 511, 213.Google Scholar
  2. Ajari, A. & Prost, J. (1993) Mouvement induit par un potentiel periodique de basse Symmetrie: dielectrophorese pulsee, C.R. Acad. Sci. Paris II 315, 1635.Google Scholar
  3. Altenmuller, T.P. & Schenzle, A. (1993) Dynamics of measurement: Aharonov’s inverse quantum Zeno effect, Phys. Rev. A48, 70.ADSGoogle Scholar
  4. Barrow, J.D. & Tipler, F.J.(1986) The Anthropic Cosmological Principle, Clarendon Press, Oxford.Google Scholar
  5. Bashford, J.D., Jarvis, P.D. & Tsohantjis, I. (1998) Supersymmetry in the genetic code, in Physical Applications and Mathematical Aspects of Geometry, eds. H.-D. Doebner, P. Nattermann, W. Scherer and C. Schulte, World Scientific Press, Singapore.Google Scholar
  6. Bennett, C.H. & DiVincenzo, D.P. (2000) Quantum information and computation, Nature 404 (2000).Google Scholar
  7. Cech, T. (1986) RNA as an enzyme, Scientific American 255, No. 5, 64.ADSCrossRefGoogle Scholar
  8. Chaitin, G. (1990) Information, Randomness & Incompleteness: Papers on Algorithmic Information Theory, second edition, World Scientific Press, Singapore.MATHGoogle Scholar
  9. Davies, P. (1998) The Fifth Miracle: The Search for the Origin of Life, Penguin, London.Google Scholar
  10. Dawkins, R. (1996) Climbing Mount Improbable, Viking, London.Google Scholar
  11. De Duve, C. (1995) Vital Dust, Basic Books, New York.Google Scholar
  12. Doering, C.R. (1995) Randomly rattled ratchets, Nuovo Cimento, 17D, 685.ADSCrossRefGoogle Scholar
  13. Dyson, F. (1971) Scientific American 225 (September issue), 25.CrossRefGoogle Scholar
  14. Eigen, M. & Schuster, P. (1979) The Hypercycle: The Principle of Natural Self-Organization, Springer-Verlag, Berlin.Google Scholar
  15. Eisert, J., Wilkens, M. & Lewenstein, M. (1999) Quantum games and quantum strategies, LANL preprint quant-ph/9806088.Google Scholar
  16. Farhi E. & Gutmann, S. (1998) Quantum computation and decision trees, Phys. Rev. A58, 915.MathSciNetADSGoogle Scholar
  17. Feynman, R.P., Leighton, R.B. and Sands, M. (1963) The Feynman Lectures on Physics, Addison-Wesley, Reading, Mass., vol. 1, sec. 46.1.Google Scholar
  18. Fox, S. (1988) Prebiotic roots of informed protein synthesis, in The Roots of Modern Biology, ed. H. Kleinkauf, de Gruyter, Berlin, p. 897.Google Scholar
  19. Fröhlich, H. (1983) Coherent Excitations in Biological Systems, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  20. Grover, L. (1999) Quantum computing, The Sciences, July/August edition, 24.Google Scholar
  21. Hameroff, S.R. (1998) Quantum computation in brain microtubules? The Penrose-Hameroff “Orch OR” model of consciousness, Phil. Trans. Royal Soc. (London) A356, 1869.MathSciNetADSGoogle Scholar
  22. Harmer, G.P. & Abbott, D. (1999) Parrondo’s paradox, Statistical Science, 14, 206.MathSciNetMATHCrossRefGoogle Scholar
  23. Hoyle, F. (1954) Astrophys. J. Supplement 1, 121.ADSCrossRefGoogle Scholar
  24. Itano, W.M., Heinzen, D.J., Bollinger, J.J. & Weinland, D.J. (1990) Quantum Zeno effect, Phys. Rev. A41, 2295.ADSGoogle Scholar
  25. Kofman, A.G. & Kurizki, G. (2000) Acceleration of quantum decay processes by frequent observations,’ Nature 405, 546.ADSCrossRefGoogle Scholar
  26. Küppers, B.-O. (1985) Molecular Theory of Evolution, Springer-Verlag, Berlin.Google Scholar
  27. Magnasco, M.O. (1993) Forced thermal ratchets, Phys. Rev. Lett. 71, 1477.ADSCrossRefGoogle Scholar
  28. Mershin, A., Nanopoulos, D.V. & Skoulakis, E.M.C. (2000) Quantum brain?, LANL preprint quant-ph/0007088n.Google Scholar
  29. McFadden, J. (2000) Quantum Evolution, HarperCollins, London.Google Scholar
  30. Meyer, D.A. (1999) Quantum strategies, Phys. Rev. Lett. 82, 1052.MathSciNetADSMATHCrossRefGoogle Scholar
  31. Milburn, G. (1998) The Feynman Processor, Perseus Books, Reading, Mass.MATHGoogle Scholar
  32. Monod, J. (1972) Chance and Necessity, trans. A. Wainhouse, Collins, London.Google Scholar
  33. Parrondo, J.M.R., Harmer, G.P. & Abbott, D. (2000) New paradoxical games based on Brownian ratchets, Phys. Rev. Lett. 85, 3386.CrossRefGoogle Scholar
  34. Patel, A. (2000) Quantum algorithms and the genetic code, LANL preprint quant-ph/0002037.Google Scholar
  35. Penrose, R. (1994) Shadows of the Mind, Oxford University Press, Oxford.Google Scholar
  36. Salam, A. (1991) The role of chirality in the origin of life, J. Mol. Evol. 33, 105.CrossRefGoogle Scholar
  37. Salam, A. (1992) Chirality, phase transitions and their induction in amino acids, Phys. Lett. B288, 153.ADSGoogle Scholar
  38. Schrödinger, E. (1944) What is Life?, Cambridge University Press, Cambridge.Google Scholar
  39. Shapiro, R. (1986) Origins: A Skeptic’s Guide to the Creation of Life on Earth, Summit Books, New York.Google Scholar
  40. Smoluchowski, M. (1912) Experimentall nachweisbare, der üblichen Thermodynamic widersprechende Molekularphänomene, Phys. Z. 13, 1069.MATHGoogle Scholar
  41. Tegmark, M. (1999) The quantum brain, LANL preprint quant-ph/9907009.Google Scholar
  42. Yockey, H. (1992) Information Theory and Molecular Biology, Cambridge University Press, Cambridge.MATHGoogle Scholar
  43. Zurek, W.H. (1991) Decoherence and the transition from quantum to classical, Physics Today, 44, No. 10, 36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Paul Davies
    • 1
  1. 1.Physics Department Imperial CollegeLondon

Personalised recommendations