Carbon Fiber Processing and Structure/Property Relations

  • D. D. Edie
Part of the NATO Science Series book series (NSSE, volume 374)


Two varieties of carbon fibers dominate high performance composite applications: PAN-based and pitch-based. PAN-based carbon fibers tend to exhibit higher strengths (both tensile and compressive) than do pitch-based carbon fibers. Consequently, they are preferred in applications where strength is critical. Pitch-based carbon fibers develop higher lattice-dependent properties (modulus and thermal conductivity) and, thus, are used when stiffness or heat transfer limits composite performance. Since the effect of structure on properties is identical for all carbon fibers, the characteristic properties of PAN-based and pitch-based carbon fibers reflect fundamental differences in their structures. The internal structures of these two varieties of carbon fibers are, in turn, a direct result of the processes used to produce them.


Carbon Fiber Molecular Orientation Coagulation Bath Precursor Fiber Mesophase Pitch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Capone, G. J. (1995) Wet-spinning technology, in J. C. Masson (ed.) Acrylic Fiber Technology and Applications, Marcel Dekker, New York, pp. 69–103.Google Scholar
  2. 2.
    Edie, D. D. and Diefendorf, R. J. (1993) Carbon fiber manufacturing, in J. D. Buckley and D. D. Edie (eds.), Carbon-Carbon Materials and Composites, Noyes Publications, Park Ridge, NH, pp. 19–37.Google Scholar
  3. 3.
    Edie, D. D. (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36(4), 345–362.CrossRefGoogle Scholar
  4. 4.
    Knudsen, J. P. (1963) The influence of coagulation variables on the structure and physical properties of an acrylic fiber. Textile Research Journal 33, 13–20.Google Scholar
  5. 5.
    Diefendorf, R. J., and Tokarsky, E. (1975) Polym. Eng. Sci. 25(3), 150–159.CrossRefGoogle Scholar
  6. 6.
    Huang, Y. and Young, R. J. (1995) Effect of microstructure upon the modulus of PAN-and pitch-based carbon fibers. Carbon 33(2), 97–107.CrossRefGoogle Scholar
  7. 7.
    Johnson, D. J. (1987) Structure property relationships in carbon fibers. J. Phys. D: Appl. Phys. 20(3), 287–291.CrossRefGoogle Scholar
  8. 8.
    Endo, M. (1988) Structure of mesophase pitch carbon fibres. J. Mater. Sci. 23(2), 598–605.CrossRefGoogle Scholar
  9. 9.
    Fitzer, E., and Müller, D. J. (1972) Chem. Ztg. 96, 20.Google Scholar
  10. 10.
    Fitzer, E., and Frohs, W., The influence of carbonization and post treatment conditions on the properties of PAN-based carbon fibers (Sept. 18-23, 1988) in Carbon’ 88, Proceedings of the International Carbon Conference, Newcastle upon Tyne, UK, pp. 298–300.Google Scholar
  11. 11.
    Singer, L. S. (1977) High modulus high strength fibers produced from mesophase pitch. U.S. Patent 4005 183.Google Scholar
  12. 12.
    Lewis, I. C. (1977) Process for producing fibers from mesophase pitch. U.S. Patent 4 032 430.Google Scholar
  13. 13.
    Chwastiak, S. (1980) Low molecular weight mesophase pitch. U.S. Patent 4 209 500.Google Scholar
  14. 14.
    Riggs, D. M., Shuford, R. J. and Lewis, R. W. (1982) Graphite fibers and composites, in G. Lubin (ed.), Handbook a/Composites, Van Nostrand Reinhold, New York, pp. 196–271.CrossRefGoogle Scholar
  15. 15.
    Dauche, F. M., Bolaños, G., Blasig, A., and Thies, M. C. (1998) Control of mesophase pitch properties from supercritical fluid extraction. Carbon 36, 953–961.CrossRefGoogle Scholar
  16. 16.
    Hutchenson, K. W., Roebers, J. R., and Thies, M. C. (1991) Fractionation of petroleum pitch by supercritical fluid extraction. Carbon 29, 215–223.CrossRefGoogle Scholar
  17. 17.
    Edie, D. D., and Dunham, M. G. (1989) Melt spinning pitch-based carbon fibers. Carbon 27(5), 647–655.CrossRefGoogle Scholar
  18. 18.
    Turpin, M., Cheung, T., and Rand, B. (1994) Controlled stress, ocillatory rheometry of a petroleum pitch. Carbon 32(2), 225–230.CrossRefGoogle Scholar
  19. 19.
    Menendez, R., Fleurot, O., Blanco, C., Santamaria, R., Bermejo, J., and Edie, D. (1998) Chemical and rheological characterization of air-blown coal-tar pitches. Carbon 36(7–8), 973–979.CrossRefGoogle Scholar
  20. 20.
    Nazem, F. F. (1982) Flow of molten mesophase pitch. Carbon 20(4), 345–354.CrossRefGoogle Scholar
  21. 21.
    Onogi, S., and Asada, T. (1980) in Rheology, Vol. 1, ed. G. Astarita, G. Marrucci and G. Nicolais. Plenum, New York.Google Scholar
  22. 22.
    Fleurot, O. and Edie, D. D. (1998) Steady and transient rheological behavior of mesophase pitches, J. Rheol. 42(4), 781–793.CrossRefGoogle Scholar
  23. 23.
    Marrucci, G. (1984) Remarks on the viscosity of polymeric liquid crystals. In Advances in Rheology, ed. B. Mena. Direction General de Publicaciones, Naples, Italy.Google Scholar
  24. 24.
    McHugh, J. J., and Edie, D. D. (1995) Orientation of mesophase pitch in capillary channel flows, Liq. Cryst. 18, 327–325.CrossRefGoogle Scholar
  25. 25.
    Robinson, K. E., and Edie, D. D. (1996) Microstructure and texture of pitch-based ribbon fibers for thermal management, Carbon 34(1), 13–36.CrossRefGoogle Scholar
  26. 26.
    Wang, L., and Rey, A. D. (1997) Pattern selection mechanism in mesophase carbon fibers. Modelling Simul. Mater. Sci. Eng. S, 67–77.Google Scholar
  27. 27.
    Sengh, A. P., and Rey, A. D. (1998) Consistency of predicted shear-induced orientation models with observed mesophase pitch-based carbon fiber textures. Carbon 36(12), 1855–1859.CrossRefGoogle Scholar
  28. 28.
    Sengh, A P., and Rey, A. D. (July 11–16, 1999) Computational modeling of carbonaceous mesophase rheology. Carbon’ 99, Extended Abstracts of the 24th Biennial Conference on Carbon, Charleston, SC, pp. 480–481.Google Scholar
  29. 29.
    Fathollahi, B., and White, J. L. (1994) Polarized light observation off low-induced microstructures in mesophase pitch. J. Rheol. 38, 1691–1607.CrossRefGoogle Scholar
  30. 30.
    Bright, A. A., and Singer, L. S. (1979) The electronic and structural characteristics of carbon fibers from mesophase pitch. Carbon 17, 59–69.CrossRefGoogle Scholar
  31. 31.
    Edie, D. D., Fox, N. K., Barnett, B. C., and Fain, C. C. (1986) Melt spun noncircular carbon fibers. Carbon 24(4), 477–482.CrossRefGoogle Scholar
  32. 32.
    Matsumoto, M., Iwashita, T., Arai, Y., and Tomioka, T. (1993) Effect of spinning conditions on structures of pitch-based carbon fiber. Carbon 31(5), 715–720.CrossRefGoogle Scholar
  33. 33.
    Hamada, T., Nishida, T., Sajiki, Y., Matsumoto, M., and Endo, M. (1987) Structure and physical properties of carbon fibers from coal tar mesophase pitch. J. Mater. Res. 2, 850–857.CrossRefGoogle Scholar
  34. 34.
    Miura, K., Nakagawa, H., and Hashimoto, K. (1995) Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate. Carbon 33(3), 275–282.CrossRefGoogle Scholar
  35. 35.
    Drbohlav, J., and Stevenson, W. T. K. (1995) The oxidative stabilization and carbonization of a synthetic mesophase pitch. Part 1: the oxidative stabilization process. Carbon 33(5), 693–711.CrossRefGoogle Scholar
  36. 36.
    Beauhamois, M. E., Zhuang, M. S., Thies, M. C., and Edie, D. D. (July 11–16, 1999) Stabilization behavior of carbon fibers melt spun from mesophase pitch mixtures. in Carbon’ 99, Extended Abstracts of the 24th Biennial Conference on Carbon, Charleston, SC, pp. 116–117.Google Scholar
  37. 37.
    Dobb, M. G., Guo, H., Johnson, D. J., and Park, C. R. (1995) Structure compression property relations in carbon fibers. Carbon 33, 1553–1559.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • D. D. Edie
    • 1
  1. 1.Chemical Engineering Center for Advanced Engineering Fibers and FilmsClemson UniversityClemsonUSA

Personalised recommendations