Skip to main content

Characterisation of Carbon Structure

  • Chapter

Part of the book series: NATO Science Series ((NSSE,volume 374))

Abstract

With its central position in the first full row of the Mendeleïev classification (1s2, 22, 2p2), the elemmt carbon exhibits unique bonding possibilities. Cabon can bond to numerous other elements and fonn different bonding with itself (catenation, illustrated in Fig. 1). Bonding in carbon materials controls tiiree major regimes:

  • Solids, with σ-bonds only, fonn 3D-structures which are rigid and isottopic. The allofropic form is diamond and is logically cubic. It has tiie highest atomic density of my solid. Bulk properties are in line: diamond is the hardest material (least deformable), and has tiie highest thermal conductivity as well as tiie highest melting point. It is m insulator with a reported band gap as high as 5.5 eV. In addition, graphite has the shortest bond lengths within the plmes of the graphite.

  • In graphite, the association of σ- and π-bonds fomis in the graphitic majs of atoms results in layered structures with a high degree of misotropy. Graphene structures, that is the smgle graphite plme, is tiie stiffest material in nature, md has the highest elastic modulus. Graphite in-plme exhibits even a higher themal conductivity than diamond. In graphite, the bmd gap is — 0.04 eV. Graphite is a semi-metal Electrical conductivity of graphite (in plane) is approximately that of iron at room temperature.

  • In fullerenes, because of the bending of te graphitic bond a re-hybridisation occurs: tese are te sp2+ε foms, intemediate between sp2 md sp3 [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebbesen T.W. and Takada T., Carbon, 33(7), pp. 973–978 (1995).

    Article  CAS  Google Scholar 

  2. IUPAC Subeommittee on Terminology and Characteriirtion of Carton, ICCTC, Fiteer E., Röchling K.H., Boehm H.P. and Marsh H., Recommended Terminology for the Description of Carbon as a Solid, Pure and Applied Chemistry, 67(3), pp. 473–506 (1995).

    Article  Google Scholar 

  3. Bourrat X., Structure of Carbon and Cabon Artefecte, ch, 1 in Sciences of Carbon Materials, edited by H, Marsh and F. Rodriguez-Reinoso, Universidad de Alicante, SP (2000).

    Google Scholar 

  4. Oberlin A., High-Resolution TEM Studies of Carbonization and graphitization, Chemistry and Physics of Carbon, Ed. P.A. Thrower, 22, pp. 1–143 (1989).

    Google Scholar 

  5. Guinier A., in ‘Théorie et Techniques de la Radioristallographie’, Dunod, Paris (1956).

    Google Scholar 

  6. Bounmt X., Oberlin A. and Bachelard R., Carbon, 31(2), pp. 287–302 (1993).

    Article  Google Scholar 

  7. Bacon G.E., Acta, Cryst., 3, pp. 137–139 (1950).

    Article  CAS  Google Scholar 

  8. Delhaes P. and Carmona F., Physical Properties of Non-crystalline Carbons, Chemistry and Physics of Carbons, Eds. P.L. Walker, Jr. and P.A. Thrower, 17, pp. 89–167 (1981).

    Google Scholar 

  9. Issi J.P. in ‘Electronic Conduction in World of Carhon’, P. Delhaes Ed., Gordon and Breach, UK, (1998).

    Google Scholar 

  10. Drits V.A. and Tchoubar C, in ‘X-ray Diffraction by Disordered Lamellar Structures’, Springer-Verlag, Berlin Germmy (1990).

    Book  Google Scholar 

  11. Scherrer P., Nachr. Ges. Wissensch., Gottingen, 2, p. 98 (1918).

    Google Scholar 

  12. Warren B.E., Phys. Rev., 59, 693–699 (1941).

    Article  CAS  Google Scholar 

  13. Ruland W., Chemistry and Physics of Carbon, Ed. P.L. Walker Jr., Marcel Dekker, New York, NY., 4, pp. 1–84 (1970).

    Google Scholar 

  14. Ergun S., Carbon, 6, pp. 141–159 (1968).

    Article  CAS  Google Scholar 

  15. Houska CR. and Warren B.E., J. Applied Physics, 25, pp. 1503–1509 (1954).

    Article  CAS  Google Scholar 

  16. de Courville-Brenazin J., Joyez P. and Tchoubar D., J. Appl. Crystallography, 14, pp. 17–23 (1981).

    Article  Google Scholar 

  17. Bouraoui A., Bull. Soc. Franç. Miné. Crist., 88, 633 (1965).

    CAS  Google Scholar 

  18. Schiller C, Méring J. and Oberlin M., J. Appl. Cryst., 1, pp. 282–285 (1968).

    Article  CAS  Google Scholar 

  19. Aladekomo J.B. and Bragg R.H., Carbon, 28(6), pp. 897–906 (1990).

    Article  CAS  Google Scholar 

  20. Maui A. and Vijayan K., J. Mat. Sci. Letter, 6, p. 872 (1987).

    Article  Google Scholar 

  21. Bokros J.C, ‘Chemistry and Physics of Carbon’, Ed. P.L. Walker, Jr. 5, p.1 (1969).

    Google Scholar 

  22. Féron O., Langlais F. and Naslain R., in ‘Proc. of Eurocarbon’ 98,’ Strasbourg, France, July 5–9 1998, GFEC & AKK, pp. 647–648 (1998).

    Google Scholar 

  23. Doux F., ‘Analysis Magazine,’ 22(1), p. 31 (1994).

    Google Scholar 

  24. Dietendorf R.J. and Tokarsky E. W., The Relationships of Structure to Properties in Graphite Fibers, in ‘Air Force Report,’ AF 33(615)-70-C-1530 (1971).

    Google Scholar 

  25. Bourrat X., Trouvat B., Limousin G, Vignoles G. and Doux F., Pyrocarbon anisotropy as measured by electron diffraction and polarized light, J. Mater. Res., Vol. 15, No1, (2000).

    Google Scholar 

  26. Kaae J.L., Gulden T.D. and Liang S., Carbon, 10, pp. 701–709 (1972).

    Article  CAS  Google Scholar 

  27. Kaae J.L., Carbon, 13, pp. 55–62 (1975).

    Article  CAS  Google Scholar 

  28. X. Bourrat, R. Pailler and P. Hanusse, Proceed, of the 21st Biennial Conf on Carbon, Buffalo June 13–18, 1993, State Univ. of N.Y. at Buffalo, ACS edt., pp94–95 (1993).

    Google Scholar 

  29. Griffith A.A., Phil. Trans. Roy. Soc., A221, p. 163 (1921).

    Google Scholar 

  30. Bacon R.. in ‘Chemistry and Physics of Carbon,’ Eds. P.L. Walker Jr. and P.A. Thrower, 9, p. 1 (1973).

    Google Scholar 

  31. Reynolds W.N., in ‘Chemistry and Physics of Carbon,’ Eds. P.L. Walker Jr. and P.A. Thrower, 11, p. 1 (1973).

    Google Scholar 

  32. Johnson D.J. ‘Chemistry and Physics of Carbon,’ P.L. Walker Jr. and P.A. Thrower, 20, p. 1 (1987).

    Google Scholar 

  33. Barr J.B., Fracture Surfaces of Carbon Filaments, in ‘Proc. 21st Biennial Conf on Carbon,’ Buffalo, NY, Amer. Carb. Soc, June 13–18, pp. 118–119 (1993).

    Google Scholar 

  34. Irwin G.R., J. Appl. Mech., 24, p. 361 (1957).

    Google Scholar 

  35. Hong S.H., Korai Y. and Mochida I., in ‘Proc. 23th Biennial Conf on Carbon’, July 18–23 1997, Penn. State, American Carbon Society, pp. 412–413 (1997).

    Google Scholar 

  36. Warren B.E. and Gringriich N.S., Phys. Rev., 46, pp. 368–399 (1934); Warren B.E., J. Chem. Phys., 2, 551 (1934).

    Article  CAS  Google Scholar 

  37. Biscoe J. and Warren B.E., J. of Applied Physics, 13, pp. 364–371 (1942).

    Article  CAS  Google Scholar 

  38. Franklin R.E., Proc. Royal Society, 209, pp. 196–218 (1951).

    Article  CAS  Google Scholar 

  39. Franklin R.E., Acta Cryst., 4, pp. 253–261 (1951).

    Article  CAS  Google Scholar 

  40. Millet J., Millet J.E. and Vivares A., J. Chim. Phys., 60, p. 553 (1963).

    CAS  Google Scholar 

  41. Amelincks S., Delavignette P. and Heerschop M.,Chemistry and Physics of Carbon, Ed. P.L. Walker Jr., Marcel Dekker, New York, NY., 1, p. 1 (1965).

    Google Scholar 

  42. Méring J. and Maire J., J. Chim. Phys., 57, p. 803 (1960).

    Google Scholar 

  43. 43. B.E. Warren and N.S. Gringriich, Phys. Rev., 46, pp 368–399 (1934); and B.E. Warren J. Chem. Phys., 2, 551 (1934)43. Brindley G.W. and Méring J., Acta Cryst., 4, pp. 411–447 (1951).

    Article  CAS  Google Scholar 

  44. G.W. Brindley et J. Méring, Acta Cryst., 4, pp 411–447 (1951).

    Google Scholar 

  45. W. Ruland in “Chemistry and Physics ofCarbon”, edt by P.L. Walker Jr., Vol 4, pp 1–84, Marcel Dekker ed., New York, NY (1970).

    Google Scholar 

  46. CR. Houska and B.E. Warren, J. Applied Physics, 25, pp 1503–1509 (1954).

    Article  CAS  Google Scholar 

  47. Maire J. and Méring J., Chemistry and Physics of Carbon, Ed. P.L. Walker Jr., 6, pp. 125–189 (1970).

    Google Scholar 

  48. J. Maire “Recherche sur le phénomène de graphitisation” Thèse de l’Université de Paris, AO 1350 (1967).

    Google Scholar 

  49. Oberlin A., Carbon, 11, p. 7 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bourrat, X. (2001). Characterisation of Carbon Structure. In: Rand, B., Appleyard, S.P., Yardim, M.F. (eds) Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance. NATO Science Series, vol 374. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1013-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1013-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0003-4

  • Online ISBN: 978-94-010-1013-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics