Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 374))

Abstract

The use of porous carbons, especially activated carbons, for gas separation is wellestablished in chemical engineering processes. Their use for storage of fuel gases has also been studied over the years. However, environmental pressures for cleaner fuels, especially for motor vehicles, have prompted a resurgence of interest in the potential of porous carbons as storage media for natural gas and for hydrogen. In this Chapter some applications of porous carbons for gas separation and storage are reviewed. The focus is on the design of the porous carbons for different duties. The processes selected for review include the separation of oxygen and nitrogen from air, methane and carbon dioxide from landfill gas, and hydrogen from hydrocarbons using molecular sieve carbons and membranes. Recently, novel forms of porous carbon, including carbon nanotubes and vapour grown carbon nanofibres have been considered as substrates for gas storage and the potential of these materials for natural gas and hydrogen storage will also be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sing, K.S. W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierro M, R.A., Rouquerol, J., and Siemieniewska, T. (1985) Reporting physisoiption data for gas/solid systems, Pure Appl Chem. 57,603–619.

    Article  CAS  Google Scholar 

  2. Rodriguez-Reinoso, F., and Linares-Solano, A. (1988) Microporous structure of activated carbons as revealed by adsorption methods, in P.A. Thrower (ed) Chemistry and Physics cf Carbon, Vol. 21, Marcel Dekker, New York, pp. 1–146.

    Google Scholar 

  3. Carrott, P.J.M., Ribeiro Caixott, M.M.L., and Mays, T.J. (1998) Comparison of methods for estimating micropore sizes in active carbons from adsorption isothems, in F. Meunier (ed) Fundamentals of Adsorption 6, Elsevier, Paris, pp. 677–682.

    Google Scholar 

  4. Gregg, S.J., and Sing, K.S.W. (1982) Adsorption Surface Area and Porosity, 2nd. Edn., Academic Press, London.

    Google Scholar 

  5. Dubinin, M.M. (1989) Fundamentals of the theory of adsorption in micropores of carbon adsorbents, Carbon 27,457–467.

    Article  CAS  Google Scholar 

  6. Stoeckli, F. (1998) Recent developments in Dubinin’s theory, Carbon 36,363–368.

    Article  CAS  Google Scholar 

  7. Reference 4, pp. 132–152.

    Google Scholar 

  8. Alain, E., McEnaney, B., Mays, T.J., Strelko, V., and Kozynchenko, O. (1999) Synthetic carbons derived from lignosulphonate waste as new materils for gas storage. Ektended Abstracts,’ Carbon’ 99’, American Carbon Society, Charleston, SC., USA, pp. 630–631.

    Google Scholar 

  9. Reference 4, pp. 173–190.

    Google Scholar 

  10. McEnaney, B., and Mays, T. J. (1995) Characterisation of macroporosity in carbons, in J.W Patrick (ed) Porosity in Carbons, Edward Arnold, London, pp. 93–130.

    Google Scholar 

  11. McEnmey, B., Mays, T.J., Yin, Y.F., and Rodriguez-Reinoso, F. (1997) Estimating the dimensions of ultramicropores using molecule proles, In B. McEnaney et al (eds) Characterisation of Porous Solids-IV, Royal Society of Chemistry, Cambridge, pp. 125–132.

    Google Scholar 

  12. Dubinin M.M., and Stoeckli, F. (1980) Homogeneous and heterogeneom micropore sfructures in carbonaceous adsorbents, J. Colloid Interface Sci 75,34–42.

    Article  CAS  Google Scholar 

  13. Horvath, G. and Kawazoe, K. (1983) Method for calculation of effective pore size distribution in molecular sieve carbon, J. Chem. Eng, Japan 16,470–475.

    Article  CAS  Google Scholar 

  14. Stoeckli, F., Rebstein, P., and Ballerini, L. (1990) On fee assessmmt of microporosity in active carbons: a comparison of theoretical and experimental data, Carbon 28,907–909.

    Article  CAS  Google Scholar 

  15. McEnaney, B., Mays, T.J., Chen, X. (1998) Computer simulations of adsorption processes in carbonaceous adsorbents, Fuel 77,557–562.

    Article  CAS  Google Scholar 

  16. Seaton, N.A., Wdton, J.P.R.B., and Quirke, N. (1989) A new analysis method for the deteimination of the pore size distribution of porous carbons from nifrogen adsorption measurements, Carbon 27,853–861.

    Article  CAS  Google Scholar 

  17. McEnaney, B., Mays, TJ., and Causton, P.D. (1987) Heterogeneous adsorption in microporous carbons, Langmuir 3,695–699.

    Article  CAS  Google Scholar 

  18. Olivier, J.P., Conklin, W.B., and Szombathely M.v. (1994) Determination of pore size distribution from density functional theory: a comparison of nifrogen and argon results, In J. Rouquerol et al (eds) Characterisatim cf Poroms Solids III, Elsevier Science, Amsterdam, pp. 81–89.

    Chapter  Google Scholar 

  19. Endo, M., Furate, T., Minoura. F., Kim, C., Oshida, K., Dresselhaus, G., and Dresselhaus, M.S. (1998) Visualized observation of pores in activated carbon fibers by HRTEM and combined image processor, Suprcmolecular Sci 5,261–266.

    Article  CAS  Google Scholar 

  20. Valenzuela D.P. and Myers, A.L. (1989) Adsorption Equilibrium Data Handbook, Prentice Hall, New York.

    Google Scholar 

  21. Stoeckli, F., Wintgens, D., Lavmchy, A., and Stoeckli, M. (1997) Binary adsorption of vapours in airtive carbons described by the combined theories of Myers-Praunitz and Dubinin, Adsorption Sci. Tech. 15,677–683.

    CAS  Google Scholar 

  22. Burchell, T.D., Judkms, E.R., Rogers, M.R., and Willimis, A.M. (1997) A novel process for separation of carbon dioxide and hydrogm sulfide gas mixtures, Carbon 35,1279–1294.

    Article  CAS  Google Scholar 

  23. Morgm, N. (1998) Cool chemistiy in a can, Chemustry in Britain, December, p. 17.

    Google Scholar 

  24. Juntgen, H. (1977) New applications for carbonaceous adsorbents, Carbon 15, 273–283.

    Article  Google Scholar 

  25. Amor, J.N. and Farris, T.S. (1994) Mild crushing of carbon molecular sieves alters perfomance at the Angstrom level, Extended Abstracts ‘Carbon’ 94’, Spanish Carbon Group, Grana Spain, pp 324–325.

    Google Scholar 

  26. Chagger, H.K., Ndaji, F.E., Sykes, M.L., and Thomas, M.K. (1995) Kinetics of adsorption and diflftisional characteristics of carbon molecule sieves, Carbon 33, 1405–1411.

    Article  CAS  Google Scholar 

  27. Koresh J.E. and Sofifer A. (1983) Molecular sieve carbon permselectivity membrane. Part 1. Presentation of a new device for gas mixture separation, Sep. Sci. Tech. 18, 723–734.

    Article  CAS  Google Scholar 

  28. Rao M.B. and Sircar S. (1996) Performance and pore characterization of nanoporous carbon membranes for gas separation, J. Membrane Sci. 110 109–118.

    Article  CAS  Google Scholar 

  29. Bromhead, J., Clint, J.H., Lear, A.M., Oliver, L.F., and Tennison, S.R. (1992) Membranes, European Patent 474 424 A2.

    Google Scholar 

  30. Hatori, H., Yamada, Y., Shiraishi, M., Nakata, H., Yoshitomo, S. (1992) Carbon molecular sieves from polyimide. Carbon 30,719.

    Article  Google Scholar 

  31. Fuertes, A.B. and Centeno, T.A. (1998) Preparation of supported asymmetric carbon molecular sieve membrmes, J. Membrane Sci. 144,105–111.

    Article  CAS  Google Scholar 

  32. Parkyns, N.D. and Quinn, D.F. (1995) Natural gas adsorbed on carbon, in J.W Patrick (ed) Porosity in Carbons, Edward Arnold, London, pp. 291–325.

    Google Scholar 

  33. Cook, T.L., Komodromos, C., Quinn, D.F., and Ragm, S. (1999) Adsorbent storage for natural gas vehicles, in T.D. Burchell (ed.), Carbon Materials for Advanced Technologies, Elsevier Science, Oxford, pp. 269–302.

    Chapter  Google Scholar 

  34. Atimta Gas & Light Adsorbent Research Group (AGLARG) (1995) Final report on adsorbed natural gas research, GRI-95/0068, Gas Research Institute, USA

    Google Scholar 

  35. Matrmga, K.R., Myers, A.L., and Glandt, E.D. (1992) Storage of natural gas by adsorption on activated carbons, Chem. Eng. Sci. 47, 1569–1579.

    Article  Google Scholar 

  36. Komodromos, C, Pearson, S., and Grint, A. (1992) The potential for adsorbed natural gas for advanced on-board storage in natural gas fuelled vehicles, International Gas Research Conference, Florida, USA.

    Google Scholar 

  37. Baker, F.S. (1995) Production of a highly microporous activated carbon product US Patent 5416056

    Google Scholar 

  38. Quinn, D.F. and MacDonald J.A. (1992) Natural gas storage. Carbon 30, 1097–1103.

    Article  CAS  Google Scholar 

  39. Bose T., Chahine R., and St. Amaud, J.M. (1991) High density adsorbent and metiiod of producing same, US Patent 4999330.

    Google Scholar 

  40. Chen X.S., McEnmey, B., Mays, T.J., Alcmiz-Monge, J., Cazorla-Amoros, D., and Linares-Solano, A. (1997) Theoretical and experimental studies of methme adsorption on microporous carbons. Carbon 35,1251–1258

    Article  CAS  Google Scholar 

  41. Burchell, T.D., Juikins, R.R., Rogers, M.R., and Shaw, W. (1998) The staidm-e and properties of carbon fiber based adsorbent monoliths, Proc International Symposium on Carbon, Japanese carbon Society, Tokyo, pp. 506–507.

    Google Scholar 

  42. Alcaniz-Monge, J., de la Casa Lillo, M.A., Cazorla-Amorós, D., and Linares-Solano, A. (1997) Methane storage in activated carbon fibres, Carbon 35,291–297.

    Article  CAS  Google Scholar 

  43. Manzi S., Valladares, D., Marchese J., and Zgrablich, G. (1997) Characterization of Maxsorb acrtivated carbons and their evaluation for gas storage, Adsorption, Sci. Tech. 15,301–309.

    CAS  Google Scholar 

  44. Loano-Castelló, D., de la Casa Lillo, M.A., Cazorla-Anaorós, D., and Linares Solano, A. (1999) Methane storage at commercially attractive levels in superactivated carbons and commercial activated carbon fibers, (1999) Extended Abstracts ‘Carbon’ 99’, Americm Carbon Society, Charleston, SC, USA, 626–627.

    Google Scholar 

  45. Lipmm, T.E. and DeLucchi, M.A. (1996) Hydrogen-fuelled vehicles, Int. J. Vehicle Design 17,562–589.

    Google Scholar 

  46. Chahine R. and Bose, T.K. (1994) Low-pressure adsorption storage of hydrogen. Int, J. Hydrogen Energy 19,161–164.

    Article  CAS  Google Scholar 

  47. Noh, J.S., Agarwal, R.K., and Schwarz, J.A. (1987) Hydrogen storage-systems using activated carbon. Int. J. Hydrogen Energy 12,693–700.

    Article  CAS  Google Scholar 

  48. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kimg, C.H., BeAune, D.S., and Heben, M.J. (1997) Storage of hydrogen in single-wdled carbon nanotubes. Nature 386,377–379.

    Article  CAS  Google Scholar 

  49. Liu, C., Fm, Y.T., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S. (1999) Hydrogen storage m single-walled cabon nanotubes at room temperature, Scieme 286,1127–1129.

    Article  CAS  Google Scholar 

  50. Yin, Y.F., Mays, T., McEnmey, B. (1999) Hydrogen storage in carbon namnotube arrays, Ektended Abstracts ‘Carbon’ 99’, Americm Carbon Society, Charleston, SC, USA, pp. 784–785.

    Google Scholar 

  51. Chambers, A., Pat, C., Baker, R.T.K., and Rodriguez, N.M. (1998) Hydrogen storage in graphite nanofibers, J. Phys, Chem, B, 102,4253–4256.

    Article  CAS  Google Scholar 

  52. Ahn, C.C., Ye, Y., Ratnakumar, B.V., Witham, C., Bowman Jr., R.C., and Fultz B. (1998) Hydrogen desoqition and adsorption measurements on graphite nanofibers, Appl. FAyi. Lett. 73,3378–3380.

    Article  CAS  Google Scholar 

  53. Klyamkin, S.N., Metenier K., Sklovsky, D.E., Bonnamy, S., and Béguin, F. (1999) Carbon nanofilamrate under high hydrogen pressure, Extended Abstracts ‚Carbon’ 99‘, American Carbon Society, Charleston, SC, USA, pp. 628–629.

    Google Scholar 

  54. Fan, Y.Y., Liao, B., Liu, M., Wei, Y.L., Lu, M.Q., and Cheng, H.M. (1999) Hydrogen uptale in vapor-grown carbon nanofibers. Carbon 37,1649–1652.

    Article  CAS  Google Scholar 

  55. Wang, Q. and Johnson, K.J. (1999) Computer simulations of hydrogen adsorption on graphite nanofibers, J.Phys. Chem. B, 103,277–281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McEnaney, B., Alain, E., Yin, YF., Mays, T.J. (2001). Porous Carbons for Gas Storage and Separation. In: Rand, B., Appleyard, S.P., Yardim, M.F. (eds) Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance. NATO Science Series, vol 374. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1013-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1013-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0003-4

  • Online ISBN: 978-94-010-1013-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics