Computing Minimal Generators of Ideals of Elliptic Curves

  • L. Chiantini
  • F. Cioffi
  • F. Orecchia
Part of the NATO Science Series book series (NAII, volume 36)


In this paper results about the Hubert function and about the number of minimal generators stated in (Orecchia) for disjoint unions of rational smooth curves are generalized to disjoint unions of distinct smooth non special curves. Hence, the maximal rank and the minimal generation of such curves are studied. In particular, we consider elliptic curves and we describe a method to compute their Hilbert functions in any dimension and for every choice of the degrees. Applications to the study of elliptic curves on threefolds are shown.

Key words

Elliptic curves Hilbert function 

Mathematics Subject Classification (2000)

14H52 14Q05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albano, G., Cioffi, F., Orecchia, F., and Ramella, I. (2000) Minimally generating ideals of rational parametric curves in polynomial time, J. Symbolic Computation 30, n. 2, 137–149.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Ballico, E. (1986) On the postulation of disjoint rational curves in a projective space, Rend. Sem, Mat. Univers. Politecn. Torino 44, 207–249.zbMATHGoogle Scholar
  3. Ballico, E., and Ellia, Ph. (1987) The Maximal Rank Conjecture for Non-Special Curves in Pn, Math. Z. 196, 355–3MathSciNetzbMATHCrossRefGoogle Scholar
  4. Cioffi, F. (1999) Minimally generating ideals of points in polynomial time using linear algebra, Ricerche di Maternatica XLVIII, Fas. I, 55–63.MathSciNetGoogle Scholar
  5. Cohen. H. (1995) A Course in Computational Algebraic Number Theory, GTM 138, Springer Verlag.Google Scholar
  6. Cremona. J. (1992) Algorithms for Modular Elliptics Curves, Cambridge University Press.Google Scholar
  7. Clemens. H. (1986) Curves in generic hypersurfaces, Ann. Sup. Sc. Ecole Norm. Sup. 19, 629–636.MathSciNetzbMATHGoogle Scholar
  8. Damion, H. (1999) A Proof of the Full Shimura-Taniyama-Weil Conjecture is Announced, Research News in Notices of AMS 46, n. 11, 1397–1401.Google Scholar
  9. Green, M. (1996) Generic Initial Ideals, in Six Lectures on Commutative Algebra, Progress in Mathematics 166, Birkhäuser Verlag.Google Scholar
  10. Gruson, L., Lazarsfeld, R., and Peskine, C. (1983) On a Theorem of Castelnuovo and the Equations Defining Space Curves. Invent. math. 72, 491–506.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Hartshorne, R.. and Hirschowilz, A. (1982) Droites en position générale dans l’espace projectif, Lect. Notes Math. 961, 169–189.CrossRefGoogle Scholar
  12. Idá. M. (1990) On the homogeneous ideal of the generic union of s-lines in P3, J. Reine Angew. Math. 403, 67–153.MathSciNetzbMATHGoogle Scholar
  13. Johnsen, T., and Kleiman, S. (1996) Rational curves of degree at most 9 on a general quintic threefold, Comm. Alg. 24, 2721–2753.MathSciNetzbMATHGoogle Scholar
  14. Kley, H.P. (2000) Rigid curves in complete intersection Calabi-Yau threefolds, Compositio Mathematical 123, no. 2, 185–208.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Kleppe, J.O., and Miró-Roig, M.R. (1998) The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Alg. 127, 73–82.zbMATHCrossRefGoogle Scholar
  16. Madonna, C. (2000) Rank 2 vector bundles on general quartic hypersurfaces in P4, preprint.Google Scholar
  17. Mazur, B. (1978) Rational isogenics of prime degree, Invent. Math. 44, 129–162.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Migliore, J. (1998) Introduction to Liaison Theory and Deficiency Modules, Progress in Mathematics 165, Birkhäuser.Google Scholar
  19. Mumford, D. (1966) Lectures on curves on an algebraic surface, Ann. of Math. Studies 59.Google Scholar
  20. Nagel, U. (1990) On Castelnuovo’s regularity and Hilbert functions, Compositio Mathematica 76, 265–275.MathSciNetzbMATHGoogle Scholar
  21. Orecchia, F. (2001) The ideal generation conjecture for s general rational curves in Pr, Journal of Pure and Applied Algebra 155, 77–89.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Shoup, V. (1999) NTL: a Library for doing Number Theory, ver. 3.9b, at
  23. Silverman, J. (1986) The Arithmetic of Elliptic Curves, GTM 106, Springer Verlag.Google Scholar
  24. Silverman, J., and Tate, J. (1992) Rational Points on Elliptic Curves, UTM 56, Springer Verlag.Google Scholar
  25. Yamagishi, H. (1999) A unified method of construction of elliptic curves with high Mordell-Weil rank, Pacific J. Math. 191, n. 1, 189–200.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • L. Chiantini
    • 1
  • F. Cioffi
    • 2
  • F. Orecchia
    • 2
  1. 1.University of SienaItaly
  2. 2.University of Naples “Federico II”Italy

Personalised recommendations