Advertisement

Characteristic Varieties of Algebraic Curves

  • A. Libgober
Chapter
Part of the NATO Science Series book series (NAII, volume 36)

Abstract

We study an invariant of plane algebraic curves with several components. Such invariant, called here a characterisitic variety, is a collection of subtori in the group of characters of the fundamental group of the complement to the curve. This invariant is a generalization of one variable Alexander polynomial. The paper discusses the basic properties of characterisitic varieties and their calculation in terms of position of the singularities of the curve in the plane.

Key words

plane algebraic curves singularities fundamental groups of the complements 

Mathematics Subject Classification (2000)

14E20 14H30 14H50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arapura, D. (1997) Geometry of cohomology support loci for local systems, 1, J. Alg. Geom. 6, 563–597.MathSciNetzbMATHGoogle Scholar
  2. Buchsbaum, D., and Eisenbud, D. (1977) What annihilates a module?, J. Algebra 47, 231–243.MathSciNetzbMATHGoogle Scholar
  3. Barthel, G., Hirzebruch, F., and Hofer, T. (1987) Geradenkonfiguarationen und Algebraishe flächen, Vieweg Publishing, Wiesbaden.Google Scholar
  4. Blass, P., and Lipman, J. (1979) Remarks on adjoints and arithmetic genus of algebraic varieties, Amer. J. of Math. 101, 331–336.MathSciNetzbMATHGoogle Scholar
  5. Brieskorn, E. (1973) Sur les groups des tresses, in Sem. Bourbaki, Lect. Notes in Math. 317, Springer, Berlin, pp. 21–44.Google Scholar
  6. Cartan, H., and Eilenberg, S. (1956) Homological Algebra, Princeton University Press, Princeton.zbMATHGoogle Scholar
  7. Cohen, D., and Suciu, A. (1995) On Milnor fibrations of arrangements, J. London Math. Soc. 51, 105–119.MathSciNetzbMATHGoogle Scholar
  8. Cohen, D., and Suciu, A. (1999) Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127, 33–53.MathSciNetzbMATHGoogle Scholar
  9. Deligne, P. (1971) Theorie de Hodge II, Publ. Math. I.H.E.S 40, 5–58.MathSciNetzbMATHGoogle Scholar
  10. Esnault, H., Schechtman, V., and Viehweg, E. (1992) Cohomology of local systems on the complement to hyperplanes, Inv. math. 109, 557–561.MathSciNetzbMATHGoogle Scholar
  11. Falk, M. (1997) Arrangements and cohomology, Ann. Comb., 1, 135–157.MathSciNetzbMATHGoogle Scholar
  12. Grauert, H., and Riemenschneider, O. (1970) Inv. Math. 11, 263–292.MathSciNetzbMATHGoogle Scholar
  13. Hartshorne, R. (1977) Algebraic Geometry, Springer Verlag, Berlin.zbMATHGoogle Scholar
  14. Hillman, J. (1981) Alexander Ideals of Links, Lecture Notes in Math. 895, Springer Verlag, Berlin.zbMATHGoogle Scholar
  15. Hironaka, E. (1997) Multi-polynomial invariants of plane algebraic curves, in Singularities and Complex Geometry, Studies in Advanced Mathematics 5, AMS and International Press, 67–74.Google Scholar
  16. Ishida, M. (1983) The irregularity of Hirzebrucrfs examples of surfaces of general type with c 12 = 3c 2, Math. Ann. 262, 407–420.MathSciNetzbMATHGoogle Scholar
  17. van Kampen, E.R. (1933) On the fundamental group of an algebraic curve, Amer. J. of Math. 55, 255–260.MathSciNetGoogle Scholar
  18. Kollar, J. (1995) Shafarevich maps and automorphic forms, Princeton University Press.Google Scholar
  19. Libgober, A. (1982) Alexander polynomials of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49, 833–851.MathSciNetzbMATHGoogle Scholar
  20. Libgober, A. (1983) Alexander invariants of plane algebraic curves, Proc. Symp. Pure Math. 40, AMS. Providence, RI, 135–143.MathSciNetGoogle Scholar
  21. Libgober, A. (1992) On homology of finite abelian coverings, Topology and Applications 43, 157–166.MathSciNetzbMATHGoogle Scholar
  22. Libgober, A. (1994) Groups which cannot be realized as fundamental groups of the complements to hypersurfaces in ℂN, in C. Bajaj (ed.), Algebraic Geometry and Application, Springer Verlag, Berlin, pp. 203–207.Google Scholar
  23. Libgober, A. (1996) Position of singularities of hypersurfaces and the topology of their complements, J. Math. Sciences 82, 3194–3210.MathSciNetzbMATHGoogle Scholar
  24. Libgober, A. (1999) Abelian Covers of projective plane, in Singularity theory (Liverpool, 1996), xxi, London Math. Soc. Lecture Note Ser. 263, Cambridge Univ. Press, Cambridge, pp. 281–289.Google Scholar
  25. Libgober, A. (2001) Hodge decomposition of Alexander invariants, Preprint.Google Scholar
  26. Libgober, A., and Yuzvinsky, S. (2000) Cohomology of the Brieskorn-Orlik-Solomon algebra and local systems, in ArrangementsTokyo 1998, Adv. Stud. Pure Math. 27, Kinokuniya, Tokyo, pp. 169–184.Google Scholar
  27. Loescr, F., and Vaquie, M. (1990) Le polynome d’Alexander d’une courbe plane projective, Topology 29, 163–173.MathSciNetGoogle Scholar
  28. Nori, M. (1983) ZariskTs conjecture and related problems, Ann. Sci. Ecole Norm. Sup. 16, 305–344.MathSciNetzbMATHGoogle Scholar
  29. Sabbah, C. (1990) Module d1 Alexander et £>-modules, Duke Math. Journal 60, 729–814.MathSciNetzbMATHGoogle Scholar
  30. Sakuma, M. (1995) Homology of abelian coverings of links and spatial graphs, Canadian Journal of Mathematics 17, 201–224.MathSciNetGoogle Scholar
  31. Serre, J.P. (1975) Algèbre locale. Multiplicités, Lecture Notes in Mathemematics 11, Springer Verlag, Berlin.zbMATHGoogle Scholar
  32. Steenrod, N. (1945) Homology with local coefficients, Ann. Math. 44, 610–627.MathSciNetGoogle Scholar
  33. Sumners, D., and Woods, J. (1977) The monodromy of reducible plane curves, Inv. Math. 40, 107–141.MathSciNetzbMATHGoogle Scholar
  34. Zariski, O. (1971) Algebraic surfaces, Chapter 8, Springer Verlag, Berlin.zbMATHGoogle Scholar
  35. Zuo, K. (1989) Kummer Oberlagerungen algebraischer Flächen, Bonner Mathematische Schriften, Bonn.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. Libgober
    • 1
  1. 1.University of Illinois at ChicagoUSA

Personalised recommendations