Skip to main content

Statistical Mechanics of the Self-Gravitating Gas. Thermodynamic Limit, Phase Diagrams Local Physical Magnitudes and Fractal Structures

  • Chapter
Phase Transitions in the Early Universe: Theory and Observations

Part of the book series: NATO Science Series ((NAII,volume 40))

  • 294 Accesses

Abstract

We provide a complete picture to the self-gravitating non-relativistic gas at thermal equilibrium using Monte Carlo simulations, analytic mean field methods (MF) and low density expansions. The system is shown to possess an infinite volume limit in the grand canonical (GCE), canonical (CE) and microcanonical (MCE) ensembles when (N, V) → ∞, keeping N/V 1/3 fixed. We compute the equation of state (we do not assume it as is customary), as well as the energy, free energy, entropy, chemical potential, specific heats, compressibilities, speed of sound and particle density; we analyze their properties, signs and singularities. All physical quantities turn out to depend on a single variable \( \eta \equiv \frac{{Gm^2 N}} {{V^{1/3} T}} \) that is kept fixed in the N → ∞ and V → ∞ limit . Th e system is in a gaseous phase for η < ητ and collapses into a dense objet for η > ητ in the CE with the pressure becoming large and negative. At ηητ the isothermal compressibility diverges. This gravitational phase transition is associated to the Jeans’ instability. Our Monte Carlo simulations yield ητ ≃: 1.515. PV/[NT] = f(η) and all physical magnitudes exhibit a square root branch point at η = η c > ητ. The values of ητ and η c change by a few percent with the geometry for large N: for spherical symmetry and N = ∞ (MF), we find η c =1.561764 ... while th e Monte Carlo simulations for cubic geometry yields η c ≃ 1.540. Th e function f(η) has a second Riemann sheet which is only physically realized in the MCE. In the MCE, the collapse phase transition takes place in this second sheet near (η)MC = 1.26 and the pressure and temperature are larger in the collapsed phase than in the gaseous phase. Both collapse phase transitions (in the CE and in the MCE) are of zeroth order since the Gibbs free energy has a jump at the transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E. M. Lifchitz, Physique Statistique, 4ème èdition, Mir-Ellipses, 1996.

    Google Scholar 

  2. H. J. de Vega, N. Sánchez and F. Combes, Nature, 383, 56 (1996).

    Article  ADS  Google Scholar 

  3. H. J. de Vega, N. Sánchez and F. Combes, Phys. Rev. D54, 6008 (1996).

    ADS  Google Scholar 

  4. H. J. de Vega, N. Sánchez and F. Combes, Ap. J. 500, 8 (1998).

    Article  ADS  Google Scholar 

  5. H. J. de Vega, N. Sánchez and F. Combes, in ‘Current Topics in Astrofundamental Physics: Primordial Cosmology’, NATO ASI at Erice, N. Sánchez and A. Zichichi editors, vol 511, Kluwer, 1998.

    Google Scholar 

  6. D. Pfenniger, F. Combes, L. Martinet, A&A 285, 79 (1994) D. Pfenniger, F. Combes, A&A 285, 94 (1994)

    ADS  Google Scholar 

  7. Wilson K.G., Kogut, J., Phys. Rep. 12, 75 (1974). K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975) and Rev. Mod. Phys. 55, 583 (1983). Phase transitions and Critical Phenomena vol. 6, C. Domb & M. S. Green, Academic Press, 1976. J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, The Theory of Critical Phenomena, Oxford Science Publication, 1992.

    Article  ADS  Google Scholar 

  8. See for example, H. Stanley in Fractals and Disordered Systems, A. Bunde and S. Havlin editors, Springer Verlag, 1991.

    Google Scholar 

  9. S. Chandrasekhar, ‘An Introduction to the Study of Stellar Structure’, Chicago Univ. Press, 1939.

    Google Scholar 

  10. See for example, W. C. Saslaw, ‘Gravitational Physics of stellar and galactic systems’, Cambridge Univ. Press, 1987.

    Google Scholar 

  11. R. Emden, Gaskugeln, Teubner, Leipzig und Berlin, 1907.

    Google Scholar 

  12. D. Lynden-Bell and R. M. Lynden-Bell, Mon. Not. R. astr. Soc. 181, 405 (1977). D. Lynden-Bell, cond-mat/9812172.

    ADS  Google Scholar 

  13. D. Lynden-Bell and R. Wood, Mon. Not. R. astr. Soc. 138, 495 (1968).

    ADS  Google Scholar 

  14. V. A. Antonov, Vest. Leningrad Univ. 7, 135 (1962).

    ADS  Google Scholar 

  15. T. Padmanabhan, Phys. Rep. 188, 285 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. G. Horwitz and J. Katz, Ap. J. 211, 226 (1977) and 222, 941 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Binney and S. Tremaine, Galactic Dynamics, Princeton Univ. Press.

    Google Scholar 

  18. J. Avan and H. J. de Vega, Phys. Rev. D 29, 2891 and 2904 (1984).

    Google Scholar 

  19. C. Destri, private communication.

    Google Scholar 

  20. L. Landau and E. Lifchitz, Mécanique des Fluides, Eds. MIR, Moscou 1971.

    MATH  Google Scholar 

  21. E. Lifchitz and L. Pitaevsky, ‘Cinétique Physique’, vol. X, cours de Physique Théorique de L. Landau and E. Lifchitz, Editions Mir, Moscou, 1980.

    Google Scholar 

  22. F. Sylos Labini, M. Montuori, L. Pietronero, Phys. Rep. 293, (1998) 61–226.

    Article  ADS  Google Scholar 

  23. See for example, K. Binder and D. W. Heermann, Monte Carlo simulations in Stat. Phys., Springer series in Solid State, 80, 1988.

    Google Scholar 

  24. L. N. Lipatov, JETP 45, 216 (1978)

    Google Scholar 

  25. E. Kamke, Differentialgleichungen, Chelsea, NY, 1971.

    Google Scholar 

  26. I M Gelfand and G. E. Shilov, Distribution Theory, vol. 1, Academic Press, New York and London, 1968.

    Google Scholar 

  27. I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series and Products, Academic Press, New York, 1980.

    MATH  Google Scholar 

  28. R. B. Larson, M.N.R.A.S. 194, 809 (1981)

    Google Scholar 

  29. J. M. Scalo, in ‘Interstellar Processes’, D.J. Hollenbach and H.A. Thronson Eds., D. Reidel Pub. Co, p. 349 (1987). H. Scheffler and H. Elsässer, ‘Physics of Galaxy and Interstellar Matter’, Springer Verlag, Berlin, 1988. C. L. Curry and C. F. Mckee, ApJ, 528, 734 (2000), C. L. Curry, astro-ph/0005292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Vega, H.J., Sánchez, N. (2001). Statistical Mechanics of the Self-Gravitating Gas. Thermodynamic Limit, Phase Diagrams Local Physical Magnitudes and Fractal Structures. In: De Vega, H.J., Khalatnikov, I.M., Sànchez, N.G. (eds) Phase Transitions in the Early Universe: Theory and Observations. NATO Science Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0997-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0997-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0057-7

  • Online ISBN: 978-94-010-0997-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics