Stress-strain curve

  • C. van Hengel


This section describes several methods that can be used to model the stress-strain curve of Glare.


Fatigue Brittleness Cold Working Prep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [I]
    G.H.J.J. Roebroeks, The Metal Volume Approach, Structural Laminates Industries, Technical Report TD-R-00-003 (restricted), Delft, The Netherlands, 2000.Google Scholar
  2. [2]
    R. Marissen, Fatigue crack growth in ARALL — A hybrid aluminium-ammid composite material, Faculty of Aerospace Engineering, Report LR-574 and Ph D Thesis, Delft, The Netherlands, Juni 1988.Google Scholar
  3. [3]
    D.G. van Hengel, ARALL static properties: An engineering theory, Faculty of Aerospace Engineering, Masters Thesis, Delft, The Netherlands, November 1980.Google Scholar
  4. [4]
    G.H.J.J. Roebroeks, Towards Glare — The development of a fatigue insentsitive and damage tolerant aircraft material, Faculty of Aerospace Engineering, Ph D Thesis, Delft, The Netherlands, December 1991.Google Scholar
  5. [5]
    A.U. de Koning, Verification of the applicability of S-N data of monolithic aluminium for estimation of the fatigue crack initiation life of GLARE coupons, National Aerospace Labaratory, Report NLR-CR-99161 (restricted), Amsterdam, The Netherlands, April 1999.Google Scholar
  6. [6]
    M. Kawai et al., Inelastic behaviour and strength of Fiber-Metal Hybrid Composite: Glare, Int. J. Mech. Sci. Vol. 40 Nos 2–3, pp. 183–198, 1998.CrossRefGoogle Scholar
  7. [7]
    T.C. Wittenberg and van Baten, Plastic buckling analysis of flat rectangular F ML plates loaded in shear, in Proceedings of the 32nd International SAMPE Technical Conference (Boston, USA), November 2000.Google Scholar
  8. [8]
    T. de Jonge, Plasticity correction for Glare plates loaded in uniaxial compression, in: “Survey of Taskforce Activities”, Fokker Aerostructures, Report B2V-01-13 (restricted), April 2001.Google Scholar
  9. [9]
    J.L. Verolme, Prediction of Stress-strain curves of Glare, Structural Laminates Company, Technical Report TD-R-96-004, Delft, The Nether-lands, May 1996.Google Scholar
  10. [10]
    M. Hagenbeek, Estimation Tool for basic Material Properties, Faculty of Aerospace Engineering, Report B2V-00-29 (restricted), Delft, The Netherlands, March 2000.Google Scholar
  11. [11]
    J.C.F.N, van Rijn, A calculation method for the stress-strain curves of Glare 3 and Glare 4B, National Aerospace Laboratory, Report NLR-CR-2000-172 (restricted), Amsterdam, April 2000.Google Scholar
  12. [12]
    B. Wimersma, Stability of Glare Structures — Calculation Methods, Structural Laminates Company, Technical Report TD-R-97-001, Delft, The Netherlands, February 1997.Google Scholar
  13. [13]
    Customer data sheet, Properties of F ML Constituents–Prepregs, Structural Laminates Company, No. 2.200, Delft, The Netherlands, October 1993.Google Scholar
  14. [14]
    H. Bär, Verifikation und Ergänzung von Berechnungsmethoden für die statische und dynamische Auslegung von GLARE-strukturen (in German), Institut für Flugzeugbau der Universität Stuttgart, Diplomarbeit, Stuttgart, Germanys, August 1992.Google Scholar
  15. [15]
    G.H.J.J. Roebroeks, GLARE ®; a structural material for fire resistant aircraft fuselages, presented October 1996 at Propulsion and Energetics Panel (PEP) 88th Symposium, AGARD conference proceedings 587, September 1997.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • C. van Hengel

There are no affiliations available

Personalised recommendations