Stress-strain curve

  • C. van Hengel


This section describes several methods that can be used to model the stress-strain curve of Glare.


Compressive Yield Stress Reversed Plasticity Crack Initiation Life Classical Laminate Theory Fibre Metal Laminate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [I]
    G.H.J.J. Roebroeks, The Metal Volume Approach, Structural Laminates Industries, Technical Report TD-R-00-003 (restricted), Delft, The Netherlands, 2000.Google Scholar
  2. [2]
    R. Marissen, Fatigue crack growth in ARALL — A hybrid aluminium-ammid composite material, Faculty of Aerospace Engineering, Report LR-574 and Ph D Thesis, Delft, The Netherlands, Juni 1988.Google Scholar
  3. [3]
    D.G. van Hengel, ARALL static properties: An engineering theory, Faculty of Aerospace Engineering, Masters Thesis, Delft, The Netherlands, November 1980.Google Scholar
  4. [4]
    G.H.J.J. Roebroeks, Towards Glare — The development of a fatigue insentsitive and damage tolerant aircraft material, Faculty of Aerospace Engineering, Ph D Thesis, Delft, The Netherlands, December 1991.Google Scholar
  5. [5]
    A.U. de Koning, Verification of the applicability of S-N data of monolithic aluminium for estimation of the fatigue crack initiation life of GLARE coupons, National Aerospace Labaratory, Report NLR-CR-99161 (restricted), Amsterdam, The Netherlands, April 1999.Google Scholar
  6. [6]
    M. Kawai et al., Inelastic behaviour and strength of Fiber-Metal Hybrid Composite: Glare, Int. J. Mech. Sci. Vol. 40 Nos 2–3, pp. 183–198, 1998.CrossRefGoogle Scholar
  7. [7]
    T.C. Wittenberg and van Baten, Plastic buckling analysis of flat rectangular F ML plates loaded in shear, in Proceedings of the 32nd International SAMPE Technical Conference (Boston, USA), November 2000.Google Scholar
  8. [8]
    T. de Jonge, Plasticity correction for Glare plates loaded in uniaxial compression, in: “Survey of Taskforce Activities”, Fokker Aerostructures, Report B2V-01-13 (restricted), April 2001.Google Scholar
  9. [9]
    J.L. Verolme, Prediction of Stress-strain curves of Glare, Structural Laminates Company, Technical Report TD-R-96-004, Delft, The Nether-lands, May 1996.Google Scholar
  10. [10]
    M. Hagenbeek, Estimation Tool for basic Material Properties, Faculty of Aerospace Engineering, Report B2V-00-29 (restricted), Delft, The Netherlands, March 2000.Google Scholar
  11. [11]
    J.C.F.N, van Rijn, A calculation method for the stress-strain curves of Glare 3 and Glare 4B, National Aerospace Laboratory, Report NLR-CR-2000-172 (restricted), Amsterdam, April 2000.Google Scholar
  12. [12]
    B. Wimersma, Stability of Glare Structures — Calculation Methods, Structural Laminates Company, Technical Report TD-R-97-001, Delft, The Netherlands, February 1997.Google Scholar
  13. [13]
    Customer data sheet, Properties of F ML Constituents–Prepregs, Structural Laminates Company, No. 2.200, Delft, The Netherlands, October 1993.Google Scholar
  14. [14]
    H. Bär, Verifikation und Ergänzung von Berechnungsmethoden für die statische und dynamische Auslegung von GLARE-strukturen (in German), Institut für Flugzeugbau der Universität Stuttgart, Diplomarbeit, Stuttgart, Germanys, August 1992.Google Scholar
  15. [15]
    G.H.J.J. Roebroeks, GLARE ®; a structural material for fire resistant aircraft fuselages, presented October 1996 at Propulsion and Energetics Panel (PEP) 88th Symposium, AGARD conference proceedings 587, September 1997.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • C. van Hengel

There are no affiliations available

Personalised recommendations