Skip to main content

Giant Negative Magnetoresistance and Strong Electron-Lattice Coupling in Amorphous Semiconductors with Magnetic Impurities

  • Chapter
  • 306 Accesses

Part of the book series: NATO Science Series ((NAII,volume 39))

Abstract

Giant negative magnetoresistance (MR) has been recently observed in Si-Gd amorphous alloys at compositions close to metal-insulator transition. The negative MR in a-Si/Gd is accompanied by massive spectral weight transfer in optical conductivity with magnetic field, which is absent in a-Si/Y. However, the weight transfer with temperature was observed in both systems. The theory of this phenomenon is suggested, which takes into account a strong carrier-lattice coupling leading to formation of local singlet pairs. The breakdown of the pairs by the temperature and exchange interaction with Gd spins provides a mechanism for the observed behavior. This behavior is compared with earlier observations of large negative MR in a-Ge/Cr and InO x amorphous alloys, where a similar explanation applies. The leading role of lattice polaron effect can be checked by measuring isotope effect upon substitution 28Si → 30Si, which should cause the temperature shift of the conductivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Imada, et al., Rev. Mod. Phys. 70, 1039;

    Google Scholar 

  2. F. Hellman et al, Phys. Rev. Lett. 77, 4652 (1996);

    Article  ADS  Google Scholar 

  3. F. Hellman et al, Phys. Rev. Lett. ibid.84, 5411 (2000).

    Article  ADS  Google Scholar 

  4. P. Xiong et al., Phys. Rev. B 59, 3929 (1999);

    Article  ADS  Google Scholar 

  5. W. Teizer et al., Phys. Rev. Lett. 85, 848 (2000).

    Article  ADS  Google Scholar 

  6. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

  7. A.N. Aleshin, A.N. Ionov, R.V. Parfen’ev, I.S. Shlimak, A.Heinrich, J. Schumann, and D. Elefant, Sov. Phys. Sol. State 30, 398 (1988) [Fiz. Tverd. Tela 30, 696 (1988)].

    Google Scholar 

  8. V. Gantmakher, Int. J. Mod. Phys B 12, 3151 (1998); (1996)

    Article  ADS  Google Scholar 

  9. V. Gantmakher et. al., JETP 82, 951 (1996) [Zh. Eksp. Teor. Fiz. 109, 1765 (1996)].

    ADS  Google Scholar 

  10. D.N. Basov, A.M. Bratkovsky, P.F. Henning, B.Zink, F.Hellman, Y.J. Wang,C.C. Homes, and M.Strongin (to be published).

    Google Scholar 

  11. G. Hertel et al., Phys. Rev. Lett. 50, 743 (1983).

    Article  ADS  Google Scholar 

  12. N e f f (∞) would be equal to an atomic density of carriers with an extra factor 2m e Ω c /πe 2, where m e is the bare electron mass and Ω c is the atomic volume.

    Google Scholar 

  13. K. Takenaka et al.,60, 13011 (1999);

    Google Scholar 

  14. T. Ishikawa et al., Phys. Rev. B 57, R8O79 (1998).

    Article  Google Scholar 

  15. M. Matlak and J. Zielinski [Acta Phys. Polon. 79, 717 (1991)] have estimated JS = 20 - 3OmeV in Gd(Al1_ x Si x )2. One can estimate JS ~ √T f s f from the spin-glass transition temperature T f ≈ 5K and the s-f charge-transfer gap s f ~ 4eV, that yields a similar value. It is reasonable to assume that in the present case JS ~ 10 meV.

    Google Scholar 

  16. A.S. Alexandrov and A.M. Bratkovsky, Phys. Rev. Lett. 84, 2043 (2000);

    Article  ADS  Google Scholar 

  17. A.S. Alexandrov and A.M. Bratkovsky, Phys. Rev. B 60, 6215 (1999);

    Article  ADS  Google Scholar 

  18. A.S. Alexandrov and A.M. Bratkovsky, J. Phys. Condens. Matt. 11, L53l (1999).

    Article  Google Scholar 

  19. P.W. Anderson, Phys. Rev. Lett. 34, 953 (1975);

    Article  ADS  Google Scholar 

  20. N.F. Mott and R.A. Street, Phys. Rev. Lett. 35, 1293 (1975).

    Article  ADS  Google Scholar 

  21. S.R. Elliott, Phys. Rev. B 38, 325, 553 (1978).

    Google Scholar 

  22. J.H. Castilho et al., Phys. Rev. B 43, 8946 (1991).

    Article  ADS  Google Scholar 

  23. V.V. Bryksin et al. Sov. Phys. Sol. State 25, 820 (1983).

    Google Scholar 

  24. G. Mahan, Many-Particle Physics (Plenum, New York, 1993);

    Google Scholar 

  25. D.Emin, Phys. Rev. B48, 13691 (1993).

    Article  ADS  Google Scholar 

  26. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford, Clarendon, 1979).

    Google Scholar 

  27. A.S. Alexandrov and A.M. Bratkovsky, Phys. Rev. Lett. 82, 141 (1999);

    Article  ADS  Google Scholar 

  28. A.S. Alexandrov and A.M. Bratkovsky, J. Phys. Condens. Matt. 11, 1989 (1999).

    Article  ADS  Google Scholar 

  29. In the present model a spin of lattice polaron is exchange coupled to local spins of Gd impurities, which are (and remain) disordered. The coupling makes the polaron energy levels shift more strongly with the field, as it would without the exchange coupling. Note that it has nothing to do with “magnetic” polaron, which can possibly be formed by a single charge carrier interacting with (anti)ferromagnetic background in dilute magnetic systems and producing local ferromagnetic regions, where it gets trapped. Because of the high carrier density in the a-Si/Gd films (~ 1021 cm-3) the magnetic polaron scenario does not apply.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bratkovsky, A.M. (2001). Giant Negative Magnetoresistance and Strong Electron-Lattice Coupling in Amorphous Semiconductors with Magnetic Impurities. In: Kaplan, M.D., Zimmerman, G.O. (eds) Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules. NATO Science Series, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0985-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0985-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0045-4

  • Online ISBN: 978-94-010-0985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics