Skip to main content

Coronal Mass Ejections at the Sun and in Interplanetary Space

A review of CMEs in the solar corona and in the solar wind

  • Chapter
Space Storms and Space Weather Hazards

Part of the book series: NATO Science Series ((NAII,volume 38))

Abstract

This chapter reviews the properties of coronal mass ejections (CMEs) in the solar corona, solar wind and interplanetary space. CMEs are now widely believed to be responsible for the most severe geomagnetic storms and are consequently the major solar driver of space weather. As seen in coronagraphs, CMEs involve an expulsion of solar plasma (and magnetic field) into interplanetary space at speeds that lie anywhere between 100 and 1500 km/s. The largest CMEs are as energetic as a major solar flare, but are not caused by large flares. Instead, it is now clear that CMEs and flares are both phenomenon arising from a large-scale destabilisation of the coronal magnetic field. A common (but not unique) CME scenario involves the eruption into space of a three-part structure comprising of an inflated helmet streamer (which leads), and a prominence cavity and associate prominence (which trail). The prominence cavity is believed to be a large magnetic flux rope. In the interplanetary medium, CMEs are detected at 1 AU 2–3 days after they leave the Sun. They are often preceded by an interplanetary shock, but their speeds are generally within 100 km/s of the ambient solar wind speed, indicating that a significant interaction between CME and solar wind has occurred. A significant fraction (30-40%) of interplanetary CMEs (ICMEs) have a geometry consistent with a magnetic flux rope, and are referred to as magnetic clouds. The interplanetary flux rope is likely to be the same structure as formed the prominence cavity at the Sun. Magnetic clouds are distinguished by the appearance in many cases of prolonged (many hours) periods of Southward interplanetary magnetic field, and are hence responsible for major geomagnetic storms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aly, J.J., (1984), On some properties of force-free magnetic fields in infinite regions of space, Astrophys., 283, 349.

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Mikic, Z. and Linker, J., (2000), A twisted flux rope model for coronal mass ejections and two-ribbon flares, Astrophys. J. Lett., 529, L49.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, CR. and Klimchuk, J.A., (1999), A model for coronal mass ejections, Astrophys. J., 510, 485.

    Article  ADS  Google Scholar 

  • Bothmer, V. and Rust, D.M., (1997), The field configuration of magnetic clouds and the solar cycle, in N.U. Crooker et al (Eds), Coronal Mass Ejections, AGU Monograph 99, AGU (Washington DC), p. 139.

    Chapter  Google Scholar 

  • Bothmer, V. and Schwenn, R., (1998), The structure and origin of magnetic clouds in the solar wind, Annales Geophys., 16, 1.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., (1988), Magnetic clouds: constant alpha force-free configurations, J. Geophys. Res., 93, 7217.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Sittler, E., Mariani, F. and Schwenn, R., (1981), Magnetic loop behind and interplanetary shock: Voyager, Helios and IMP8 observations, J Geophys. Res., 86, 6673.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Lepping, R.P.and Jones, J.A., (1990), Global configuration of a magnetic cloud, in C.T. Russell et al. (Eds), Physics of magnetic flux ropes, AGU Monograph 58, AGU (Washington DC), p 373.

    Chapter  Google Scholar 

  • Burton, R.K., McPherron, R.L.and Russell, C.T., (1975), An empirical relationship between interplanetary conditions and Dst, J. Geopyhys. Res, 80, 4204.

    Article  ADS  Google Scholar 

  • Canfield, R.C., Hudson, H.S. and McKenzie, D.E., (1999), Sigmoidal morphology and eruptive solar activity, Geophys. Res. Lett., 26, 627.

    Article  ADS  Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S. and Zalesak, S.T., (1995), Geometry of interplanetary magnetic clouds, Geophys. Res. Lett., 22, 647.

    Article  ADS  Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S. and Zalesak, S.T., (1996), MHD simulations of the motion of magnetic flux tubes through a magnetized plasma, J. Geophys. Res, 101, 4855.

    Article  ADS  Google Scholar 

  • Cargill, P.J., Schmidt, J., Spicer, D.S. and Zalesak, ST., (2000), The magnetic structure of over-expanding CMEs, J. Geophys. Res, 105, 7509.

    Article  ADS  Google Scholar 

  • Chen, J., (1996), Theory of prominence eruption and propagation: interplanetary consequences, J. Geophys. Res., 101, 27, 499.

    Google Scholar 

  • Chen, J., (2000), Physics of coronal mass ejections: a new paradigm for solar eruptions, Space Sci Revs., in press.

    Google Scholar 

  • Chen, J., Cargill, P.J. and Palmadesso, P.J., (1996), Real-time identification and prediction of geoeffective solar wind structures, Geophys. Res. Lett., 23, 625.

    Article  ADS  Google Scholar 

  • Chen, J., Cargill, P.J. and Palmadesso, P.J., (1997a), Predicting geoeffective solar wind structures, J. Geophys. Res., 102, 14, 701.

    Google Scholar 

  • Chen, J. et al., (1997b), Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13, Astrophys. J. Letters, 490, L191.

    Article  ADS  Google Scholar 

  • Chen, J. et al., (2000), Magnetic geometry and dynamics of the fast coronal mass ejection of 1997 September 9, Astrophys. J., 533, 481.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Gosling, J.T. and Kahler, S.W., (1998), Magnetic clouds at sector boundaries, J. Geophys. Res., 103, 301.

    Article  ADS  Google Scholar 

  • Crooker, N.U. et al., (1998b), Sector boundary transformation by an open magnetic cloud, J. Geophys. Res., 103, 26, 859.

    Google Scholar 

  • Dere, K.P. et al., (1997), EIT and LASCO observations of the initiation of a CME, Solar Phys., 175, 601.

    Article  ADS  Google Scholar 

  • Dere, K.P., Brueckner, G.E., Howard, R.A., Michels, D.J. and Delaboudiniere, J.P., (1999), LASCO and EIT observations of helical structure in CMEs, Astrophys. J., 516, 465.

    Article  ADS  Google Scholar 

  • Dryer, M., Wu, S.T., Steinolfson, R.S. and Wilson, R.M., (1979), Magnetohydrodynamic models of coronal transients in the meridional plane: II Simulation of the coronal transient of 1973, August 21, Astrophys. J., 227, 1059.

    Article  ADS  Google Scholar 

  • Forsyth, R.J., Balogh, A., Horbury, T.S., Erdos, G., Smith, E.J. and Burton, M.E., (1996), The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole, Astron. Astrophys., 316, 287.

    ADS  Google Scholar 

  • Gopalswamy, N. et al., (2000), Interplanetary acceleration of coronal mass ejections, Geophys. Res.Lett., 27, 145.

    Article  ADS  Google Scholar 

  • Gosling, J.T., (1990) Coronal mass ejections and magnetic flux ropes in interplanetary space, in C.T. Russell et al. (Eds), Physics of magnetic flux ropes, AGU Monograph 58, AGU (Washington DC), p 343.

    Chapter  Google Scholar 

  • Gosling, J.T., (1993), The solar flare myth, J. Geophys. Res., 98, 18, 937.

    Google Scholar 

  • Gosling, J.T., McComas, DJ., Phillips, J.L. and Bame, S.J., (1991), Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831.

    Article  ADS  Google Scholar 

  • Gosling, J.T. et al., (1994), A forward-reverse shock pair in the solar wind driven by overexpansion of a CME: Ulysses observations, Geophys. Res. Lett., 21, 237.

    Article  ADS  Google Scholar 

  • Gosling, J.T. et al., (1995), A CME-driven solar wind disturbance observed at both low and high heliographic latitudes, Geophys. Res. Lett., 22, 1753.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Birn, J. and Hesse, M., (1995), Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events, Geophys. Res.Lett., 22, 869.

    Article  ADS  Google Scholar 

  • Gosling, J.T. and Riley, P., (1996), The acceleration of slow coronal mass ejections in the high-speed solar wind, Geiphys. Res. Lett., 23, 2867.

    Article  ADS  Google Scholar 

  • Hammond, C.M. et al., (1995), Latitudinal structure of a CME inferred from Ulysses and Geotail observations, Geophys. Res. Lett., 22, 1169.

    Article  ADS  Google Scholar 

  • Harrison, R.A., (1986), Solar coronal mass ejections and flares, Astron. Astrophys., 162, 283.

    ADS  Google Scholar 

  • Harrison, R.A., Hildner, E., Hundhausen, A.J., Sime, D.G. and Simnett, G.M., (1990), The launch of solar coronal mass ejections: results from the coronal mass ejection onset program, J. Geophys. Res., 95, 917.

    Article  ADS  Google Scholar 

  • Howard, R.A., Michels, DJ., Sheeley, N.R. and Koomen, M.J., (1982), The observation of a coronal transient directed at Earth, Astrophys. J. Letters., 263, LI01.

    Article  Google Scholar 

  • Howard, R.A., Sheeley, N.R., Koomen, M.J. and Michels, DJ., (1985), Coronal mass ejections: 1979-1981, J. Geophys. Res., 90, 8173.

    Article  ADS  Google Scholar 

  • Hudson, H.S. and Cliver, E.W., (2000), Observing CMEs without coronagraphs, preprint.

    Google Scholar 

  • Hudson, H.S. and Webb, D.F., (1997) Soft X-ray signatures of coronal mass ejections, in N.U. Crooker et al (Eds), Coronal Mass Ejections, AGU Monograph 99, AGU (Washington DC), p.27.

    Chapter  Google Scholar 

  • Hudson, H.S., Lernen, J.R., St Cyr, O.C., Sterling, A.C. and Webb, D.F., (1998), X-ray coronal changes during halo CMEs, Geophys. Res.Lett, 24, 2481.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., (1997), Coronal mass ejections, in J.R. Jokipii et al (Eds), Cosmic winds in the heliosphere, Univ. Arizona Press, p.259.

    Google Scholar 

  • Hundhausen, A.J., (1999), Coronal mass ejections, in K.T. Strong et al. (Eds), The many faces of the Sun, Springer, p 143.

    Google Scholar 

  • Hundhausen, A.J., (1993) Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984-1989, J. Geophys. Res., 98, 13, 177.

    Google Scholar 

  • Hundhausen, A.J., Burkepile, J.T. and St Cyr, O.C., (1994), Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989, J. Geophys. Res., 99, 6543.

    Article  ADS  Google Scholar 

  • Illing, R.M.E. and Hundhausen, A.J., (1983), Possible observation of a disconnected magnetic structure in a coronal transient, J. Geophys. Res., 88, 10, 951.

    Google Scholar 

  • Illing, R.M.E. and Hundhausen, A.J., (1985), Observations of a coronal transient from 1.2 to 6 solar radii, J. Geophys. Res., 90, 245.

    Article  ADS  Google Scholar 

  • Illing, R.M.E. and Hundhausen, A.J., (1986), Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection, J. Geophys. Res., 91, 10, 210.

    Article  Google Scholar 

  • Klein, L.W. and Burlaga, L.F., (1982), Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 67, 613.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A., (2000) Theory of coronal mass ejections, in AGU Chapman conference on space weather, in press.

    Google Scholar 

  • Lepping, R.P., Jones, J.A. and Burlaga, L.F., (1990), Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11, 957.

    Article  Google Scholar 

  • Lindsay, G.M., Russell, C.T. and Luhmann, J.G., (1995), Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness, J. Geophys. Res., 100, 16, 999.

    Google Scholar 

  • Lindsay, G.M., Luhmann, J.G., Russell, C.T. and Gosling, J.T., (1999), Relationships between CME speeds from coronagraph images and interplanetary characteristics of associated ICMEs, J. Geophys. Res., 104, 12, 515.

    Google Scholar 

  • Low, B.C., (1996), Solar activity and the corona, Solar Phys., 167, 217.

    Article  ADS  Google Scholar 

  • MacQueen, R.M. and Fisher, R.R., (1983), The kinematics of solar inner coronal transients, Solar Phys., 89, 89.

    Article  ADS  Google Scholar 

  • McComas, D.J., Gosling, J.T., Winterhalter, D. and Smith, E.J., (1988), Interplanetary magnetic field draping around fast coronal mass ejecta in the outer heliosphere, J. Geophys. Res., 93, 2519.

    Article  ADS  Google Scholar 

  • McComas, DJ., Gosling, J.T., Hammond, CM., Moldwin, M.B., Phillips, J.L. and Forsyth, R.J., (1994), Magnetic reconnection ahead of a coronal mass ejection, Geophys, Res. Lett., 21, 1751.

    Article  ADS  Google Scholar 

  • Moreton, G.F., (1961), Fast-moving disturbances on the surface of the Sun, Sky and Telescope, 21, 145.

    ADS  Google Scholar 

  • Mulligan, T., Russell, C.T. and Luhmann, J.G., (1998) Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res.Lett., 25, 2959.

    Article  ADS  Google Scholar 

  • Mulligan, T. et al., (1999) Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations, J. Geophys. Res., 104, 28, 217.

    Google Scholar 

  • Munro, R.H. and Sime, D.G., (1985), White-light coronal transients observed from Skylab May 1973 to February 1974: a classification by apparent morphology, Solar Phys., 97, 191.

    Article  ADS  Google Scholar 

  • Nitta, N. and Akiyama, S., (1999) Relation between flare-associated X-ray ejections and coronal mass ejections, Astrophys. J. Lett, 525, L57.

    Article  ADS  Google Scholar 

  • Odstrcil, D. and Pizzo, V.J., (1999), Distortion of the interplanetary magnetic field by threedimensional propagation of coronal mass ejections in a structured solar wind, J. Geophys. Res., 104,28,225.

    Google Scholar 

  • Reames, D.V., (1999), Solar energetic particles: is there time to hide?, Radiation measurement, 30, 297.

    Article  Google Scholar 

  • Rust, D.M. and Hildner, E., (1976), Expansion of an X-ray coronal arch into the outer corona, Solar Phys., 48, 381.

    Article  ADS  Google Scholar 

  • Rust, D.M. and Kumar, A., (1996), Evidence for helically kinked magnetic flux ropes in solar eruptions, Astrophys. J.Lett., 464, L199.

    Article  ADS  Google Scholar 

  • St Cyr, O.C. et al., (2000) Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998, J. Geophys. Res. 105, 18,169.

    Google Scholar 

  • Schmidt, J.M., (2000), Flux ropes embedded in a radial magnetic field: analytic solutions for the external magnetic field, Solar Phys., in press.

    Google Scholar 

  • Schmidt, J.M. and Cargill, P.J., (2000a), The evolution of magnetic flux ropes in sheared plasma flows, J. Plasma Phys., 64, 41.

    Article  ADS  Google Scholar 

  • Schmidt, J.M. and Cargill, P.J., (2000b), Magnetic cloud evolution in a multi-speed solar wind, J. Geophys. Res., submitted.

    Google Scholar 

  • Sheeley, N.R., Walters, J.H., Wang, Y.M. and Howard, R.A., (1999), Continuous tracking of coronal outflows: two kinds of coronal mass ejections, J. Geophys. Res., 104, 24, 739.

    Google Scholar 

  • Simnett, G.M. et al., (1997), LASCO observations of disconnected magnetic structures out to beyond 28 solar radii during coronal mass ejections, Solar Phys., 175, 685.

    Article  ADS  Google Scholar 

  • Sterling, A.C. and Hudson, H.S., (1997), Yohkoh SXT observations of X-ray dimming associated with a halo coronal mass ejection, Astrophys. J.Lett, 491, L55.

    Article  ADS  Google Scholar 

  • Subramanian, P., Dere, K.P., Rich, N.B. and Howard, R.A., (1999) The relationship of coronal mass ejections to streamers, J. Geophys. Res., 104, 22, 321.

    Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St Cyr, O.C. and Michels, DJ., (1998), SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997, Geophys. Res.Lett, 25, 2465.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St Cyr, O.C. and Michels, DJ., (1999a), SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal Moreton waves, Astrophys.J.Lett., 517, L151.

    Article  ADS  Google Scholar 

  • Thompson, B.J. et al., (1999b), The correspondence of EUV and white light observations of CMEs, in Sun-Earth plasma connections, Geophys. Mon., 109, ed. J.L. Burch et al., AGU, Washington DC, p31.

    Chapter  Google Scholar 

  • Thompson, B.J., Cliver, E.W., Nitta, N, Delannee, C. and Delaboudiniere, J.-P., (2000), Coronal dimming and energetic CMEs in April-May 1998, Geophys. Res.Lett., 27, 1431.

    Article  ADS  Google Scholar 

  • Tousey, R., (1973), The solar corona, Adv. Space Res., 13, 713.

    Google Scholar 

  • Vandas, M., Fischer, S., Pelant, P. and Geranios, A., (1993), Spheroidal models of magnetic clouds and comparison with spacecraft measurements, J. Geophys. Res., 98, 11467.

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Dryer, M, Smith, Z. and Detman, T., (1995), Simulation of magnetic cloud propagation in the inner heliosphere in two-dimensions: 1. loop perpendicular to the ecliptic plane, J. Geophys. Res., 100, 12, 285.

    Google Scholar 

  • Vourladis, A., Subramanian, P., Dere, K.P. and Howard, R.A., (2000) LASCO measurements of the energetics of coronal mass ejections, Astrophys. J., 534, 456.

    Article  ADS  Google Scholar 

  • Webb, D.F. and Howard, R.A., (1994), Solar cycle variation of coronal mass ejections and the solar wind mass flux, J. Geophys. Res., 99, 4201.

    Article  ADS  Google Scholar 

  • Webb, D.F., Cliver, E.W., Crooker, N.U., St Cyr, O.C. and Thompson, B.J, (2000), Relationship of halo coronal mass ejections, magnetic clouds and magnetic storms, J. Geophys. Res., 105, 7491.

    Article  ADS  Google Scholar 

  • Wilson, R.M. and Hildner, E, (1984), Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU?, Solar Phys., 91, 169.

    Article  ADS  Google Scholar 

  • Wilson, R.M. and Hildner, E, (1986), On the association of magnetic clouds with disappearing filaments, J. Geophys. Res., 91, 5867.

    Article  ADS  Google Scholar 

  • Wolfson, R. and Dlamini, B., Magnetic shear and cross-field currents: roles in the evolution of the pre-cprpnal mass ejection corona, Astrophys. J. 526, 1046.

    Google Scholar 

  • Wood, B.E, Karovska, M, Chen, J., Brueckner, G.E., Cook, J.W. and Howard, R.A., (1999), Comparison of two coronal mass ejections observed by EIT and LASCO with a model of an erupting flux rope, Atrophys. J., 512, 484.

    Article  ADS  Google Scholar 

  • Wu, S.T, Guo, W.P., Michels.D.J, and Burlaga, L.F, (1999), MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: analysis of the January 1997 Sun-Earth connection event,. J. Geophys. Res., 104, 14, 789.

    Google Scholar 

  • Zarro, D.M., Sterling, A.C., Thompson, B.J., Hudson, H.S. and Nitta. N, (1999), SOHO/EIT observations of EUV dimming associated with a halo coronal mass ejection, Astrophys. J.Lett., 520, L139.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cargill, P.J. (2001). Coronal Mass Ejections at the Sun and in Interplanetary Space. In: Daglis, I.A. (eds) Space Storms and Space Weather Hazards. NATO Science Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0983-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0983-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0031-7

  • Online ISBN: 978-94-010-0983-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics