Uncovering the Differences between T Cell Tolerance and Immunity

  • Anthony T. Vella

Abstract

In the last two decades, T cell function has been analyzed in vitro from many different angles, with a great deal of attention dedicated to the basic requirements of activation. During this time, a compendium of information has been collected and has proven to be invaluable. Paradoxically, very little is known about T cell activation and function in vivo. In the last decade, a number of models have been developed which allow the tracking of Ag-activated T cells in vivo and these studies have been instrumental in advancing the field of T cell biology. In particular, a new and emerging paradigm of T cell immunity is evolving.

Key words

T cell activation immunity immune memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar A. N., Borthwick N. J., Wickremasinghe R. G., Panayoitidis P., Pilling D., Bofill M., Krajewski S., Reed J. C. and Salmon M. (1996): Interleukin-2 receptor common gamma-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur. J. Immunol., 26, 294–299.PubMedGoogle Scholar
  2. Alderson M. R., Armitage R. J., Maraskovsky E., Tough T. W., Roux E., Schooley K., Ramsdell F. and Lynch D. H. (1993): Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med., 178, 2231–2235.PubMedGoogle Scholar
  3. Anderson G., Hare K. J. and Jenkinson E. J. (1999): Positive selection of thymocytes: the long and winding road. Immunol. Today, 20, 463–468.PubMedGoogle Scholar
  4. Bernal A., Proft T., Fraser J. D. and Posnett D. N. (1999): Superantigens in human disease. J. Clin. Immunol., 19, 149–157.PubMedGoogle Scholar
  5. Bretscher P. and Cohn M. (1970): A theory of self-nonself discrimination. Science, 169, 1042–1049.PubMedGoogle Scholar
  6. Cauley L. S., Cauley K. A., Shub F., Huston G. and Swain S. L. (1997): Transferable anergy: superantigen treatment induces CD4+ T cell tolerance that is reversible and requires CD4CD8 cells and interferon gamma. J. Exp. Med., 186, 71–81.PubMedGoogle Scholar
  7. Chiller J. M. and Weigle W. O. (1973): Termination of tolerance to human gamma globulin in mice by antigen and bacterial lipopolysaccharide (endotoxin). J. Exp. Med., 137, 740–750.PubMedGoogle Scholar
  8. Croft M. and Dubey C. (1997): Accessory molecule and costimulation requirements for CD4 T cell response. Crit. Rev. Immunol., 17, 89–118.PubMedGoogle Scholar
  9. Dresser D. W. (1962): Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology, 5, 378–388.PubMedGoogle Scholar
  10. Dresser D. W. and Gowland G. (1964): Immunological paralysis induced in adult rabbits by small amounts of protein antigen. Nature, 203, 733–736.PubMedGoogle Scholar
  11. Dutton R. W., Bradley L. M. and Swain S. L. (1998): T cell memory. Annu. Rev. Immunol., 16, 201–223.PubMedGoogle Scholar
  12. Flynn S., Toellner K. M., Raykundalia C, Goodall M. and Lane P. (1998): CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express inter-leukin 4 and upregulates expression of the chemokine receptor, Blr-1. J. Exp. Med., 188, 297–304.PubMedGoogle Scholar
  13. Freund J. (1951): The effect of parafin oil and mycobacteria on antibody formation and sensitization. Am. J. Clin. Pathol., 21, 645–656.PubMedGoogle Scholar
  14. Gramaglia I., Weinberg A. D., Lemon M. and Croft M. (1998): Ox-40 ligand: a potent cos-timulatory molecule for sustaining primary CD4 T cell responses. J. Immunol., 161, 6510–6517.PubMedGoogle Scholar
  15. Gray D. and Matzinger P. (1991): T cell memory is short-lived in the absence of antigen. J. Exp. Med., 174, 969–974.PubMedGoogle Scholar
  16. Grewal I. S. and Flavell R. A. (1996): The role of CD40 ligand in costimulation and T-cell activation. Immunol. Rev., 153, 85–106.PubMedGoogle Scholar
  17. Gross J. A., Callas E. and Allison J. P. (1992): Identification and distribution of the costimulatory receptor CD28 in the mouse. J. Immunol., 149, 380–388.PubMedGoogle Scholar
  18. Guerder S., Picarella D. E., Linsley P. S. and Flavell R. A. (1994): Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor alpha leads to autoimmunity in transgenic mice. Proc. Natl. Acad. Sci. USA, 91, 5138–5142.PubMedGoogle Scholar
  19. Harding F. A., McArthur J. G., Gross J. A., Raulet D. H. and Allison J. P. (1992): CD28-medi-ated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, 356, 607–609.PubMedGoogle Scholar
  20. Harris N. L. and Ronchese F. (1999): The role of B7 costimulation in T-cell immunity. Immunol. Cell Biol., 77, 304–311.PubMedGoogle Scholar
  21. Hausmann S. and Wucherpfennig K. W. (1997): Activation of autoreactive T cells by peptides from human pathogens. Curr. Opin. Immunol., 9, 831–838.PubMedGoogle Scholar
  22. Hou S., Hyland L., Ryan K. W., Portner A. and Doherty P. C. (1994): Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature, 369, 652–654.PubMedGoogle Scholar
  23. Jenkins M. K., Pardoll D. M., Mitzuguchi J., Chused T. M. and Shwartz R. H. (1987a): Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc. Natl. Acad. Sci. USA, 84, 5409–5413.PubMedGoogle Scholar
  24. Jenkins M. K., Pardoll D. M., Mizuguchi J., Quill H. and Schwartz R. H. (1987b): T cell unresponsiveness in vivo and in vitro: Fine specificity of induction and molecular characterization of the unresponsive state. Immunol. Rev., 95, 113–135.PubMedGoogle Scholar
  25. Jenkins M. K. and Schwartz R. H. (1987): Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med., 165, 302–319.PubMedGoogle Scholar
  26. Kappler J. W., Roehm N. and Marrack P. (1987): T cell tolerance by clonal elimination in the thymus. Cell, 49, 273–280.PubMedGoogle Scholar
  27. Kawabe Y. and Ochi A. (1990): Selective anergy of Vβ8+, CD4+ T cells in Staphylococcus enterotoxin-B primed mice. J. Exp. Med., 172, 1065–1070.PubMedGoogle Scholar
  28. Kawabe Y. and Ochi A. (1991): Programmed cell death and extrathymic reduction of Vbeta8+ CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature, 349, 245–248.PubMedGoogle Scholar
  29. Kearney E. R., Pape K. A., Loh D. Y and Jenkins M. K. (1994): Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity, 1, 327–339.PubMedGoogle Scholar
  30. Kiener P. A., Moran-Davis P., Rankin B. M., Wahl A. F., Aruffo A. and Hollenbaugh D. (1995): Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J. Immunol., 155, 4917–4925.PubMedGoogle Scholar
  31. Kotzin B. L., Leung D. Y., Kappler J. and Marrack P. (1993): Superantigens and their potential role in human disease. Adv. Immunol., 54, 99–165.PubMedGoogle Scholar
  32. Krammer P. H., Behrmann I., Daniel P., Dhein J. and Debatin K. (1994): Regulation of apoptosis in the immune system. Curr. Opin. Immunol, 6, 279–289.PubMedGoogle Scholar
  33. Kuroda K., Yagi J., Imanishi K., Yan X.-J., Li X.-Y, Fujimaki W, Kato H., Miyoshi-Akiyama T, Kumazawa Y., Abe H. and Uchiyama T. (1996): Implantation of IL-2-containing osmotic pump prolongs the survival of superantigen-reactive T cells explanded in mice injected with bacterial superantigen. J. Immunol., 157, 1422–1431.PubMedGoogle Scholar
  34. Lafferty K. J. and Cunningham A. J. (1975): A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci., 53, 27–42.PubMedGoogle Scholar
  35. Lau L. L., Jamieson B. D., Somasundaram T. and Ahmed R. (1994): Cytotoxic T-cell memory without antigen. Nature, 369, 648–652.PubMedGoogle Scholar
  36. Lenardo M. J. (1991): Interleukin-2 programs mouse αb T lymphocytes for apoptosis. Nature, 353, 858–861.PubMedGoogle Scholar
  37. Leonard W. J., Noguchi M., Russell S. M. and McBride O. W. (1994): The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor gamma chain as a common gamma chain, gamma c. Immunol. Rev., 138, 61–86.PubMedGoogle Scholar
  38. Marrack P., Hugo P., McCormack J. and Kappler J. (1993): Death and T cells. Immunol. Rev., 133, 119–129.PubMedGoogle Scholar
  39. Marrack P. C. and Kappler J. W. (1990): The staphylococcal enterotoxins and their relatives. Science, 248, 705–711.PubMedGoogle Scholar
  40. Matzinger P. (1994): Tolerance, danger, and the extended family. Annu. Rev. Immunol., 12, 991–1045.PubMedGoogle Scholar
  41. Matzinger P. (1998): An innate sense of danger. Semin. Immunol., 10, 399–415.PubMedGoogle Scholar
  42. Maxwell J. R., Campbell J. D., Kim C. H. and Vella A. T. (1999): CD40 activation boosts T cell immunity in vivo by enhancing T cell clonal expansion and delaying peripheral T cell deletion. J. Immunol., 162, 2024–2034.PubMedGoogle Scholar
  43. Maxwell J. R., Weinberg A., Prell R. A. and Vella A. T. (2000): Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol., 164, 107–112.PubMedGoogle Scholar
  44. McCormack J. E., Callahan J. E., Kappler J. and Marrack (1993): Profound deletion of mature T cells in vivo by chronic exposure to exogenous superantigen. J. Immunol., 150, 3785–3792.PubMedGoogle Scholar
  45. Melero I., Shuford W. W., Newby S. A., Aruffo A., Ledbetter J. A., Hellstrom K. E., Mittler R. S. and Chen L. (1997): Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat. Med., 3, 682–685.PubMedGoogle Scholar
  46. Morrissey P. J., Bradley D., Sharrow S. O. and Singer A. (1983): T cell tolerance to non-H-2—encoded stimulatory alloantigens is induced intrathymically but not prethymically. J. Exp. Med., 158, 365–377.PubMedGoogle Scholar
  47. Mullbacher A. (1994): The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J. Exp. Med., 179, 317–321.PubMedGoogle Scholar
  48. Ohshima Y, Tanaka Y, Tozawa H., Takahashi Y, Maliszewski C. and Delespesse G. (1997): Expression and function of OX40 ligand on human dendritic cells. J. Immunol., 159, 3838–3848.PubMedGoogle Scholar
  49. Opferman J. T, Ober B. T. and Ashton-Rickardt P. G. (1999): Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science, 283, 1745–1748.PubMedGoogle Scholar
  50. Paterson D. J., Jefferies W. A., Green J. R., Brandon M. R., Corthesy P., Pullaves M. and Williams A. F. (1987): Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol. Immunol., 24, 1281–1290.PubMedGoogle Scholar
  51. Pollok K. E., Kim Y.-J., Zhou Z., Hurtado J., Kim K. K., Pickard R. T. and Kwon B. S. (1993): Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol., 150, 771–781.PubMedGoogle Scholar
  52. Powell J. D., Ragheb J. A., Kitagawa-Sakakida S. and Schwartz R. H. (1998): Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy. Immunol. Rev., 165, 287–300.PubMedGoogle Scholar
  53. Roy M., Aruffo A., Ledbetter J., Linsley P. and Kehry M. (1995): Studies on the interdependence of gp39 and B7 expression and function during antigen-specific immune response. Eur. J. Immunol., 25, 596–603.PubMedGoogle Scholar
  54. Shahinian A., Pfeffer K., Lee K. P., Kündig T. M., Kishihara K., Wakeham A., Kawai K., Ohashi P. M., Thompson C. B. and Mak T. W. (1993): Differential T cell costimulatoryr equirements in CD28-deficient mice. Science, 261, 609–612.PubMedGoogle Scholar
  55. Shuford W. W., Klussman K., Titchler D. D., Loo D. K., Chalupny J., Siadak A. W., Brown T. J., Emswiler J., Raecho H., Larsen C. P., Pearson T. C, Ledbetter J. A., Aruffo A. and Mittler R. S. (1997): 4-IBB constimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med., 186, 47–55.PubMedGoogle Scholar
  56. Sprent J., Lo D., Gao E.-K. and Ron Y. (1998): T cell selection in the thymus. Immunol. Rev., 101, 173–190.Google Scholar
  57. Stuber E., Neurath M., Calderhead D., Fell H. P. and Strober W. (1995): Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity, 2, 507–521.PubMedGoogle Scholar
  58. Swain S. L. (1994): Generation and in vivo persistence of polarized Thl and Th2 memory cells. Immunity, 1, 543–552.PubMedGoogle Scholar
  59. Takahashi C., Mittler R. S. and Vella A. T. (1999): Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol., 162, 5037–5040.PubMedGoogle Scholar
  60. Taneja V. and David C. S. (1999): HLA class II transgenic mice as models of human diseases. Immunol. Rev., 169, 67–79.PubMedGoogle Scholar
  61. Teague T. K., Kappler J. W., Marrack P. and Vella A. T. (1997): Interleukin-6 inhibits resting T cells from apoptosis. J. Immunol., 158, 5791–5796.PubMedGoogle Scholar
  62. Vella A. T., Dow S., Potter T. A., Kappler J. and Marrack P. (1998): Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 95, 3810–3815.PubMedGoogle Scholar
  63. Vella A. T., McCormack J. E., Linsley P. S., Kappler J. W. and Marrack P. (1995): Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity, 2, 261–270.PubMedGoogle Scholar
  64. Vella A. T., Mitchell T., Groth B., Linsley P. S., Green J. M., Thompson C. B., Kappler J. W. and Marrack P. (1997a): CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J. Immunol., 158, 4714–4720.PubMedGoogle Scholar
  65. Vella A. T, Scherer M. T, Schultz L., Kappler J. W. and Marrack P. (1996): B cells are not essential for peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA, 93, 951–955.PubMedGoogle Scholar
  66. Vella A., Teague T. K., Ihle J., Kappler J. and Marrack P. (1997b): Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J. Exp. Med., 186, 325–330.PubMedGoogle Scholar
  67. Villegas E. N., Elloso M. M., Reichmann G., Peach R. and Hunter C. A. (1999): Role of CD28 in the generation of effector and memory responses required for resistance to toxoplasma gondii. J. Immunol., 163, 3344–3353.PubMedGoogle Scholar
  68. Vinay D. S. and Kwon B. S. (1998): Role of 4-1BB in immune responses. Semin. Immunol., 10, 481–489.PubMedGoogle Scholar
  69. Wahl S. M. (1994): Transforming growth factor beta: the good, the bad, and the ugly. J. Exp. Med., 180, 1587–1590.PubMedGoogle Scholar
  70. Weinberg A. D., Vella A. T. and Croft M. (1998): OX-40: life beyond the effector T cell stage. Semin. Immunol., 10, 471–480.PubMedGoogle Scholar
  71. Weiner H. L. (1997): Oral tolerance for the treatment of autoimmune diseases. Annu. Rev. Med., 48, 341–351.PubMedGoogle Scholar
  72. Yssel H., Fasler S., Lamb J. and de Vries J. E. (1994): Induction of non-responsiveness in human allergen-specific type 2 T helper cells. Curr. Opin. Immunol., 6, 847–852.PubMedGoogle Scholar
  73. Zheng L., Fisher G., Miller R. E., Peschon J., Lynch D. H. and Lenardo M. J. (1995): Induction of apoptosis in mature T cells by tumour necrosis factor. Nature, 377, 348–351.PubMedGoogle Scholar
  74. Zinkernagel R. M., Planz O., Ehl S., Battegay M., Odermatt B., Klenerman P. and Hengartner H. (1999): General and specific immunosuppression caused by antiviral T-cell responses. Immunol. Rev., 168, 305–315.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Anthony T. Vella
    • 1
  1. 1.Department of MicrobiologyOregon State UniversityCorvallisUSA

Personalised recommendations