Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 37))

  • 269 Accesses

Abstract

These lectures survey some recent developments concerning the theory and applications of harmonic approximation in Euclidean space. We begin with a discussion of the significance of the concept of thinness for harmonic approximation, and present a complete description of the closed (possibly unbounded) sets on which uniform harmonic approximation is possible. Next we demonstrate the power of such results by describing their use to solve an old problem concerning the Dirichlet problem for unbounded regions. The third lecture characterizes the functions on a given set which can be approximated by harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. U. Arakelyan, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), 273–286 (Russian); English translation, Amer. Math. Soc. Transl. (2) 122 (1984), 85-97.

    MathSciNet  Google Scholar 

  2. N. U. Arakelyan, Approximation complexe et propriétés des fonctions analytiques, Actes, Congrès intern. Math. (1970), Tome 2, 595–600.

    Google Scholar 

  3. D. H. Armitage, Uniform and tangential harmonic approximation, These proceedings.

    Google Scholar 

  4. D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.

    Book  MATH  Google Scholar 

  5. D. H. Armitage and M. Goldstein, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (2) 68 (1994), 112–126.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. G. Arsove, The Lusin-Privalov theorem for subharmonic functions, Proc. London Math. Soc. (3) 14 (1964), 260–270.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Bagby and P. M. Gauthier, Approximation by harmonic functions on closed subsets of Riemann surfaces, J. Anal. Math. 51 (1988), 259–284.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Bagby and P. M. Gauthier, Harmonic approximation on closed subsets of Riemannian manifolds, in: Complex Potential Theory (P. M. Gauthier, ed.), NATO ASI Ser. C Math. Phys. Sci. 439, Kluwer, Dordrecht, 1994; 75–87.

    Google Scholar 

  9. T. Bagby, P. M. Gauthier and J. Woodworth, Tangential harmonic approximation on Riemannian manifolds, in: Harmonic Analysis and Number Theory (S. W. Drury and M. Ram Murty, eds.), CMS Conf. Proc. 21, Amer. Math. Soc, Providence, RI, 1997; 58–72.

    Google Scholar 

  10. R. D. Berman, A converse to the Lusin-Privalov radial uniqueness theorem, Proc. Amer. Math. Soc. 87 (1983), 103–106.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Böe, Sets of determination for smooth harmonic functions, preprint.

    Google Scholar 

  12. M. Brelot, Sur l’approximation et la convergence dans la théorie des fonctions har-moniques ou holomorphes, Bull. Soc. Math. France 73 (1945), 55–70.

    MathSciNet  MATH  Google Scholar 

  13. T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astronom. Fys. 20B (1927), 1–5.

    Google Scholar 

  14. Chen Huaihui and P. M. Gauthier, A maximum principle for subharmonic and plurisub-harmonic functions, Canad. Math. Bull. 35 (1992), 34–39.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Debiard and B. Gaveau, Potentiel fin et algebres de fonctions analytiques I, J. Funct. Anal. 16 (1974), 289–304.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Deny, Sur l’approximation des fonctions harmoniques, Bull. Soc. Math. France 73 (1945), 71–73.

    MathSciNet  MATH  Google Scholar 

  17. J. Deny, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103–113.

    Article  MathSciNet  Google Scholar 

  18. M. R. Essén and S. J. Gardiner, Limits along parallel lines and the classical fine topology, J. London Math. Soc. (2) 59 (1999), 881–894.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Fuglede, Finely Harmonic Functions, Lecture Notes in Math. 289, Springer, Berlin, 1972.

    MATH  Google Scholar 

  20. B. Fuglede, Asymptotic paths for subharmonic functions, Math. Ann. 213 (1975), 261–274.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Fuglede, Fine potential theory, Mitt. Math. Ges. DDR 2-3 (1986), 3–21.

    MathSciNet  Google Scholar 

  22. S. J. Gardiner, The Dirichlet problem with non-compact boundary, Math. Z. 213 (1993), 163–170.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. J. Gardiner, Superharmonic extension and harmonic approximation, Ann. Inst. Fourier (Grenoble), 44 (1994), 65–91.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. J. Gardiner, Tangential harmonic approximation on relatively closed sets, Illinois J. Math. 39 (1995), 143–157.

    MathSciNet  MATH  Google Scholar 

  25. S. J. Gardiner, Harmonic Approximation, London Math. Soc. Lecture Note Ser. 221, Cambridge Univ. Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  26. S. J. Gardiner, The Lusin-Privalov theorem for subharmonic functions, Proc. Amer. Math. Soc. 124 (1996), 3721–3727.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. J. Gardiner, Decomposition of approximable harmonic functions, Math. Ann. 308 (1997), 175–185.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. J. Gardiner, Non-tangential limits, fine limits and the Dirichlet integral, to appear in Proc. Amer. Math. Soc.

    Google Scholar 

  29. S. J. Gardiner and M. Goldstein, Carleman approximation by harmonic functions, Amer. J. Math. 117 (1995), 245–255.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. J. Gardiner and W. Hansen, Boundary sets where harmonic functions may become infinite, preprint.

    Google Scholar 

  31. P. M. Gauthier and S. Ladouceur, Uniform approximation and fine potential theory, J. Approx. Theory 72 (1993), 138–140.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. V. Keldys, On the solvability and stability of the Dirichlet problem, Uspekhi Mat. Nauk 8 (1941), 171–231 (Russian); English translation Amer. Math. Soc. Transl. 51 (1966), 1-73.

    Google Scholar 

  33. M. Labrèche, De l’approximation harmonique uniforme, Doctoral thesis, Université de Montréal, 1982.

    Google Scholar 

  34. N. N. Lusin and I. I. Privalov, Sur l’unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143–191.

    MATH  Google Scholar 

  35. A. A. Nersesyan, Carleman sets, Izv. Akad. Nauk. Armjan. SSR Ser. Mat. 6 (1971), 465–471 (Russian); English translation Amer. Math. Soc. Transl. (2) 122 (1984), 99-104.

    MathSciNet  Google Scholar 

  36. R. Nevanlinna, Über eine Erweiterung des Poissonschen Integrals, Ann. Acad. Sci. Fenn. Ser.A 24 (4) (1925), 1–15.

    Google Scholar 

  37. P. J. Rippon, The boundary cluster sets of subharmonic functions, J. London Math. Soc. (2) 17 (1978), 469–479.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Stray, Decomposition of approximable functions, Ann. Math. 120 (1984), 225–2

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Stray, Simultaneous approximation in the Dirichlet space, to appear in Math. Scand.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gardiner, S.J. (2001). Harmonic approximation and its applications. In: Arakelian, N., Gauthier, P.M., Sabidussi, G. (eds) Approximation, Complex Analysis, and Potential Theory. NATO Science Series, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0979-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0979-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0029-4

  • Online ISBN: 978-94-010-0979-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics