Harmonic approximation and its applications

  • Stephen J. Gardiner
Part of the NATO Science Series book series (NAII, volume 37)


These lectures survey some recent developments concerning the theory and applications of harmonic approximation in Euclidean space. We begin with a discussion of the significance of the concept of thinness for harmonic approximation, and present a complete description of the closed (possibly unbounded) sets on which uniform harmonic approximation is possible. Next we demonstrate the power of such results by describing their use to solve an old problem concerning the Dirichlet problem for unbounded regions. The third lecture characterizes the functions on a given set which can be approximated by harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.


Harmonic Function Dirichlet Problem Harmonic Measure Harmonic Approximation Boundary Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. U. Arakelyan, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), 273–286 (Russian); English translation, Amer. Math. Soc. Transl. (2) 122 (1984), 85-97.MathSciNetGoogle Scholar
  2. [2]
    N. U. Arakelyan, Approximation complexe et propriétés des fonctions analytiques, Actes, Congrès intern. Math. (1970), Tome 2, 595–600.Google Scholar
  3. [3]
    D. H. Armitage, Uniform and tangential harmonic approximation, These proceedings.Google Scholar
  4. [4]
    D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.MATHCrossRefGoogle Scholar
  5. [5]
    D. H. Armitage and M. Goldstein, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (2) 68 (1994), 112–126.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. G. Arsove, The Lusin-Privalov theorem for subharmonic functions, Proc. London Math. Soc. (3) 14 (1964), 260–270.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    T. Bagby and P. M. Gauthier, Approximation by harmonic functions on closed subsets of Riemann surfaces, J. Anal. Math. 51 (1988), 259–284.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    T. Bagby and P. M. Gauthier, Harmonic approximation on closed subsets of Riemannian manifolds, in: Complex Potential Theory (P. M. Gauthier, ed.), NATO ASI Ser. C Math. Phys. Sci. 439, Kluwer, Dordrecht, 1994; 75–87.Google Scholar
  9. [9]
    T. Bagby, P. M. Gauthier and J. Woodworth, Tangential harmonic approximation on Riemannian manifolds, in: Harmonic Analysis and Number Theory (S. W. Drury and M. Ram Murty, eds.), CMS Conf. Proc. 21, Amer. Math. Soc, Providence, RI, 1997; 58–72.Google Scholar
  10. [10]
    R. D. Berman, A converse to the Lusin-Privalov radial uniqueness theorem, Proc. Amer. Math. Soc. 87 (1983), 103–106.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    B. Böe, Sets of determination for smooth harmonic functions, preprint.Google Scholar
  12. [12]
    M. Brelot, Sur l’approximation et la convergence dans la théorie des fonctions har-moniques ou holomorphes, Bull. Soc. Math. France 73 (1945), 55–70.MathSciNetMATHGoogle Scholar
  13. [13]
    T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astronom. Fys. 20B (1927), 1–5.Google Scholar
  14. [14]
    Chen Huaihui and P. M. Gauthier, A maximum principle for subharmonic and plurisub-harmonic functions, Canad. Math. Bull. 35 (1992), 34–39.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    A. Debiard and B. Gaveau, Potentiel fin et algebres de fonctions analytiques I, J. Funct. Anal. 16 (1974), 289–304.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    J. Deny, Sur l’approximation des fonctions harmoniques, Bull. Soc. Math. France 73 (1945), 71–73.MathSciNetMATHGoogle Scholar
  17. [17]
    J. Deny, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103–113.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. R. Essén and S. J. Gardiner, Limits along parallel lines and the classical fine topology, J. London Math. Soc. (2) 59 (1999), 881–894.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    B. Fuglede, Finely Harmonic Functions, Lecture Notes in Math. 289, Springer, Berlin, 1972.MATHGoogle Scholar
  20. [20]
    B. Fuglede, Asymptotic paths for subharmonic functions, Math. Ann. 213 (1975), 261–274.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    B. Fuglede, Fine potential theory, Mitt. Math. Ges. DDR 2-3 (1986), 3–21.MathSciNetGoogle Scholar
  22. [22]
    S. J. Gardiner, The Dirichlet problem with non-compact boundary, Math. Z. 213 (1993), 163–170.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    S. J. Gardiner, Superharmonic extension and harmonic approximation, Ann. Inst. Fourier (Grenoble), 44 (1994), 65–91.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    S. J. Gardiner, Tangential harmonic approximation on relatively closed sets, Illinois J. Math. 39 (1995), 143–157.MathSciNetMATHGoogle Scholar
  25. [25]
    S. J. Gardiner, Harmonic Approximation, London Math. Soc. Lecture Note Ser. 221, Cambridge Univ. Press, Cambridge, 1995.MATHCrossRefGoogle Scholar
  26. [26]
    S. J. Gardiner, The Lusin-Privalov theorem for subharmonic functions, Proc. Amer. Math. Soc. 124 (1996), 3721–3727.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    S. J. Gardiner, Decomposition of approximable harmonic functions, Math. Ann. 308 (1997), 175–185.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    S. J. Gardiner, Non-tangential limits, fine limits and the Dirichlet integral, to appear in Proc. Amer. Math. Soc. Google Scholar
  29. [29]
    S. J. Gardiner and M. Goldstein, Carleman approximation by harmonic functions, Amer. J. Math. 117 (1995), 245–255.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    S. J. Gardiner and W. Hansen, Boundary sets where harmonic functions may become infinite, preprint.Google Scholar
  31. [31]
    P. M. Gauthier and S. Ladouceur, Uniform approximation and fine potential theory, J. Approx. Theory 72 (1993), 138–140.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    M. V. Keldys, On the solvability and stability of the Dirichlet problem, Uspekhi Mat. Nauk 8 (1941), 171–231 (Russian); English translation Amer. Math. Soc. Transl. 51 (1966), 1-73.Google Scholar
  33. [33]
    M. Labrèche, De l’approximation harmonique uniforme, Doctoral thesis, Université de Montréal, 1982.Google Scholar
  34. [34]
    N. N. Lusin and I. I. Privalov, Sur l’unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143–191.MATHGoogle Scholar
  35. [35]
    A. A. Nersesyan, Carleman sets, Izv. Akad. Nauk. Armjan. SSR Ser. Mat. 6 (1971), 465–471 (Russian); English translation Amer. Math. Soc. Transl. (2) 122 (1984), 99-104.MathSciNetGoogle Scholar
  36. [36]
    R. Nevanlinna, Über eine Erweiterung des Poissonschen Integrals, Ann. Acad. Sci. Fenn. Ser.A 24 (4) (1925), 1–15.Google Scholar
  37. [37]
    P. J. Rippon, The boundary cluster sets of subharmonic functions, J. London Math. Soc. (2) 17 (1978), 469–479.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    A. Stray, Decomposition of approximable functions, Ann. Math. 120 (1984), 225–2MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    A. Stray, Simultaneous approximation in the Dirichlet space, to appear in Math. Scand. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Stephen J. Gardiner
    • 1
  1. 1.Department of MathematicsUniversity College Dublin4 DublinIreland

Personalised recommendations