Skip to main content

Approximation of subharmonic functions with applications

  • Chapter
Approximation, Complex Analysis, and Potential Theory

Part of the book series: NATO Science Series ((NAII,volume 37))

Abstract

If f(z) is analytic in a domain G ⊂ ℂ, the function v(z) = log f(z) is subharmonic in G. We discuss the extent to which the converse is true, and show that approximation of general subharmonic functions u(z) by those of the special form v(z) = log f(z) provides a powerful tool to create analytic and meromorphic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966.

    MATH  Google Scholar 

  2. V. Azarin, On rays of completely regular growth of an entire function, Math. USSR-Sb. 8 (1969).

    Google Scholar 

  3. P. P. Belinskii, General Properties of Quasiconformal Mappings, Nauka, Novosibirsk, 1974 (Russian).

    Google Scholar 

  4. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand Math. Stud. 13, Van Nostrand, Princeton, NJ, 1967.

    Google Scholar 

  5. A. Cantón, D. Drasin, and A. Granados, Sets of asymptotic values for entire and mero-morphic functions, to appear.

    Google Scholar 

  6. M. L. Cartwright, Integral Functions, Cambridge Tracts in Math. and Math. Phys. 44, Cambridge Univ. Press, 1956.

    Google Scholar 

  7. D. Drasin, On Nevanlinna’ inverse problem, Complex Variables Theory Appl. 37 (1998).

    Google Scholar 

  8. A. Edrei, A local form of the Phragmén-Lindelöf indicator, Mathematika 17 (1970), 149–172.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. E. Eremenko, The set of asymptotic values of a finite order meromorphic function, Mat. Zametki 24 (6) (1978), 779–783 (Russian); English transl.: Math. Notes 24 (1978-9).

    MathSciNet  MATH  Google Scholar 

  10. M. Girnyk, Approximation of a subharmonic function of infinite order by the logarithm of the modulus of an entire funtion, Mat. Zametki 50 (4) (1991), 57–60 (Russian); English transl.: Math. Notes 50 (1991), 1025-1027.

    MathSciNet  MATH  Google Scholar 

  11. M. Girnyk, Approximation of functions subharmonic in a disk by the logarithm of the modulus of an analytic function, English transl.: Ukrainian Math. J. 46 (8) (1994), 1188–1192.

    Article  MathSciNet  Google Scholar 

  12. M. Girnyk and A. A. Gol’dberg, Approximation of subharmonic functions by logarithms of moduli of entire functions in integral metrics, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn Tekh. Nauki (2000).

    Google Scholar 

  13. A. A. Gol’d berg and I. V. Ostrovskii, The Distribution of Values of Meromorphic Functions Nauka, Moskow, 1970 (Russian).

    Google Scholar 

  14. A. A. Gol’dberg, B. Ja. Levin, and I. V. Ostrovskii, Entire and Meromorphic Functions, Encyclopaedia Math. Sci. 85, Springer, Berlin, 1997.

    Google Scholar 

  15. W. K. Hayman and P. B. Kennedy, Subharmonic Functions vol. 1, Academic Press, London-New York, 1976.

    MATH  Google Scholar 

  16. W. K. Hayman, Subharmonic Functions vol. 2, Academic Press, London-New York. 1989.

    MATH  Google Scholar 

  17. M. Heins, Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt, Rinehart and Winston, New York 1962.

    MATH  Google Scholar 

  18. A. Hinkkanen, A sharp form of Nevanlinna’ second fundamental theorem, Invent. Math. 108 (1992), 549–574.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Kjellberg, On Certain Integral and Subharmonic Functions, Thesis, Univ. of Uppsala, 1948.

    Google Scholar 

  20. B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monogr. 5, Amer. Math. Soc, Providence, RI, 1964.

    Google Scholar 

  21. N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc, Providence, 1940.

    Google Scholar 

  22. Y. Lyubarski and E. Malinnikova, On approximation of subharmonic functions, to appear in J. Anal. Math.

    Google Scholar 

  23. P. Mattila, Geometry of Sets and Measures in Euclidean Space, Cambridge Univ. Press. 1995.

    Google Scholar 

  24. S. N. Mergelyan, Uniform Approximations to Functions of a Complex Variable, Amer. Math. Soc. Transl. 101, Amer. Math. Soc, Providence, RI, 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Drasin, D. (2001). Approximation of subharmonic functions with applications. In: Arakelian, N., Gauthier, P.M., Sabidussi, G. (eds) Approximation, Complex Analysis, and Potential Theory. NATO Science Series, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0979-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0979-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0029-4

  • Online ISBN: 978-94-010-0979-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics