Skip to main content

Abstract

Recent years have demonstrated that ultrasonic waves in solids permit investigations of wave chaos, reverberation and multiple scattering that complement those of microwaves, optics and electronics. The large quality factors that can be achieved with elastic waves, their relatively slow wave speed, and their good impedance mismatch with the laboratory, lead to certain advantages for the experimentalist and new perspectives for the theorist. In particular these features allow transients to be observed, allow good isolation from leads and antennas, and convenient time and length scales in the experiment. A short course on continuum elastodynamics in solids is followed by a review of the laboratory work on spectral and transport properties of diffuse ultrasonic waves in solids. These include demonstrations of energy equipartition, of eigenvalue correlations and spectral rigidity, enhanced backscatter in enclosures, wave diffusion, and Anderson localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustin Cauchy, Exercise de Mathematiques, Imprimerie du Bachelier, Paris, 3, 160 (1828).

    Google Scholar 

  2. S.D. Poisson, Mémoire sur l’equilibre et le mouvement des corps elastiques, Mém. de l’Acad. Royale des Sciences, 8, 357, 623 (1829).

    Google Scholar 

  3. J. MacCullagh, Trans. Royal Irish Acad. 21, 17 (1848).

    Google Scholar 

  4. K. F. Graff, Wave Motion in Elastic Solids (Dover, NY, 1975).

    MATH  Google Scholar 

  5. J. Miklowitz, Elastic waves and waveguides (North Holland, 1978).

    Google Scholar 

  6. J. D. Achenbach, Wave propagation in elastic solids (Elsevier, 1973).

    Google Scholar 

  7. R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic methods in solid state physics (New York, Academic Press, 1969).

    Google Scholar 

  8. K. Aki, Quantitative seismology: theory and methods (W. H. Freeman, San Francisco, 1980).

    Google Scholar 

  9. B. A. Auld, Acoustic waves and fields in solids (Wiley, NY, 1973).

    Google Scholar 

  10. Y.-H. Pao and C. C. Mow, Diffraction of elastic waves and dynamic stress concentrations (Crane, Russak and Co., NY, 1973).

    Google Scholar 

  11. J. D. Achenbach and A. K. Gautesen, J. Acoust. Soc. Am. 61, 413 (1977).

    Article  ADS  MATH  Google Scholar 

  12. P. C. Waterman, J. Acoust. Soc. Am. 60, 413 (1976).

    Article  MathSciNet  Google Scholar 

  13. F. C. Karal and J. B. Keller, J. Math. Phys. 5, 537 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. F. Stanke and G. Kino, J. Acoust. Soc. Am. 75, 665 (1984).

    Article  ADS  MATH  Google Scholar 

  15. V.K.Varadan, Y. Ma and V. V. Varadan, J. Acoust. Soc. Am. 77, 375 (1985).

    Article  ADS  MATH  Google Scholar 

  16. R. L. Weaver, J. Mechs. Phys. of Solids 38, 55–86 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. A. Turner and R. L. Weaver, J. Acoust. Soc. Am. 96, 3654–3674 (1994).

    Article  ADS  Google Scholar 

  18. L. V. Ryzhik, G. Papanicolaou, and J. B. Keller Wave Motion 24, 327–370 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. S. Antman, Nonlinear Problems of Elasticity (Springer-Verlag New York, 1995). Ivan Stephen Sokolnikoff Mathematical theory of elasticity, 2nd ed. (New York, McGraw-Hill, 1956).

    Book  MATH  Google Scholar 

  20. J. P. Wolfe, Physics Today, 48, 34 (1995).

    Article  Google Scholar 

  21. R. L. Weaver, J. Sound and Vibr., 94, 319–335 (1984).

    Article  ADS  Google Scholar 

  22. D. Egle, J. Acoust. Soc. Am. 70, 476 (1981).

    Article  ADS  MATH  Google Scholar 

  23. R. L. Weaver, J. Acoust. Soc. Am. 71, 1608–1609 (1982).

    Article  ADS  Google Scholar 

  24. Lord Rayleigh, Proceedings London Mathematical Society, 17, 4 (1877).

    Article  Google Scholar 

  25. J. Miklowitz, ASME J. Applied Mechanics 49, 797–815 (1982); V. K. Kinra and B. Q. Vu, Mech. Res. Comm. 10, 193-8 (1983); B. V. Budaev and D. B. Bogy, Wave Motion 22, 239-57 (1995).

    Article  ADS  MATH  Google Scholar 

  26. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, p. 1872ff (McGraw Hill, NY, 1953).

    MATH  Google Scholar 

  27. A. Migliori, J. L. Sarrao, Resonant Ultrasound Spectroscopy, (John Wiley, New York, 1997); W. M. Visscher, A. Migliori, T. Bell, R. Reinert, J. Acoust. Soc. Am. 90, 2154–2162 (1991).

    Google Scholar 

  28. W. Sachse and K. Y. Kim, 311–320, in Review of Quantitative Nondestructive Evaluation, 6A, eds. D. O. Thompson and D. E. Chimenti, (Plenum Press, NY, 1986).

    Google Scholar 

  29. J. de Rosny, A. Tourin and M. Fink, Phys. Rev. Lett. 84, 1693 (2000)

    Article  ADS  Google Scholar 

  30. C. Ellegaard, T.Guhr, K. Lindemann, J. Nygård and M. Oxborrow, Phys. Rev. Lett. 77, 4918–4921 (1996).

    Article  ADS  Google Scholar 

  31. M. Hauser, R. L. Weaver and J. P. Wolfe, Phys. Rev. Lett. 68, 2604 (1992); R. L. Weaver, M. Hauser and J. P. Wolfe, Zeitschrift fur Physik B 90, 27-46 (1993).

    Article  ADS  Google Scholar 

  32. L. R. F. Rose, J. Acoust. Soc. Am. 75, 723 (1984); J. P. Monchalin, A. Moreau, et al., various papers on laser ultrasound in Nondestructive characterization of materials VIII, R. E. Green, Jr. ed., (Plenum Press, New York, 1998).

    Google Scholar 

  33. R. L. Weaver, Wave Motion 12, 129–142 (1990).

    Article  Google Scholar 

  34. N. N. Hsu, J. A. Simmons and S. C. Hardy, Materials Evaluation 35, 100 (1977).

    Google Scholar 

  35. F. R. Breckinridge, C. E. Tschiegg and M. Greenspan, J. Acoust. Soc. Am. 57, 626 (1975).

    Article  ADS  Google Scholar 

  36. S. L. McBride and T. S. Hutchinson, Can. J. Phys. 54, 1824 (1976).

    Article  ADS  Google Scholar 

  37. N. N. Hsu and F. R. Breckinridge, Materials Evaluation, 39, 60 (1980).

    Google Scholar 

  38. P. Bertelsen, C. Ellegaard, M Oxborrow et al., Phys. Rev. Lett., 83, 2171 (1999).

    Article  ADS  Google Scholar 

  39. A. G. Smagin, Cryogenics 15, 483–485 (1972).

    Article  Google Scholar 

  40. J. J. M. Verbaarschot, H. A. Weidenmuller and M. R. Zirnbauer, Physics Reports 129, 367–438 (1985); S. Albeverio, F, Haake, P. Kurasov, M. Kus and P. Seba, J. Math. Phys. 37, 4888-4903 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  41. R. A. Guyer and P. A. Johnson, Physics Today 48, 30 (1999).

    Article  Google Scholar 

  42. R. L. Weaver and O. I. Lobkis, Ultrasonics 38, 491–494 (2000).

    Article  Google Scholar 

  43. R. S. Muller, R. T. Howe, S. D. Senturia, R. L. Smith, and R. M. White, eds Microsensors IEEE, (New York, 1991)

    Google Scholar 

  44. R. L. Weaver, J. Acoust. Soc. Am., 78, 131–136 (1985).

    Article  ADS  MATH  Google Scholar 

  45. M. Dupuis R. Mazo, and L. Onsager J. Chem. Phys. 33, 1452–1462 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  46. R. L. Weaver, J. Acoust. Soc. Am., 79, 919–923 (1986).

    Article  ADS  Google Scholar 

  47. R. L. Weaver and Y.-H. Pao, ASME J. Appl. Mechs. 49, 821–836 (1982).

    Article  ADS  MATH  Google Scholar 

  48. R. L. Weaver, J. Sound Vibr. 94, 319–335 (1984).

    Article  ADS  Google Scholar 

  49. R. L. Weaver, J. Acoust. Soc. Am., 80, 1539–1541 (1986).

    Article  ADS  Google Scholar 

  50. R. L. Weaver, J. Acoust. Soc. Am., 85, 1005–1013 (1989); D. Delande, D. Sornette and R. L. Weaver, J. Acoust. Soc. Am. 96, 1873-1880 (1994).

    Article  ADS  Google Scholar 

  51. O. Bohigas, O. Legrand, C. Schmit and D. Sornette, J. Acoust. Soc. Am. 89, 1456–1458 (1991).

    Article  ADS  Google Scholar 

  52. R. L. Weaver, J. Sound Vibr. 130, 487–491 (1989).

    Article  ADS  Google Scholar 

  53. O. I. Lobkis, R. L. Weaver, and I. Rozhkov, “Power Variances and Decay Curvature in a Reverberant System”, in press, J. Sound Vibr. (2000).

    Google Scholar 

  54. O. Legrand, F. Mortessagne, P. Sebbah and C. Vanneste, Actes du 4eme Congres Francais d’Acoustique, CFA 97, p.315, Marseille, France, 14-18 April 1997.

    Google Scholar 

  55. M. Rollwage, K. Ebeling, and D. Guicking, Acustica 58, 149–161 (1985).

    Google Scholar 

  56. R. H. Lyon and R. G. DeJong, Theory and application of statistical energy analysis, (Butterworths-Heimann, Boston, MA, 1995).

    Google Scholar 

  57. J. L. Davy J. Sound Vibr. 107, 361–373 (1986); also J. Sound Vibr. 115, 145-161(1987); also J. Sound Vibr. 77, 455-479 (1981).

    Article  ADS  Google Scholar 

  58. O. I. Lobkis, R. L. Weaver, in press, J. Acoust. Soc. Am. (2000).

    Google Scholar 

  59. e.g. M. Stautberg Greenwood, J. L. Mai and M. S. Good, J. Acoust. Soc. Am. 94, 908–916 (1993); J. M. Hovem and G. D. Ingram, J. Acoust. Soc. Am. 66, 1807-1812 (1979); C. M. Sayers and R. L. Grenfell, Ultrasonics 31, 147-153 (1993); M. A. Biot, J. Acoust. Soc. Am. 28, 168-178 (1956) and J. Acoust. Soc. Am. 28, 179-191 (1956); D. Wu, Z. W. Qian, and D. Shao, J. Sound Vibr 162, 529-535 (1993); R. C. Courtney and L. Mayer, J. Acoust. Soc. Am. 93, 3193-3200 (1993).

    Article  ADS  Google Scholar 

  60. e.g. L. Schwartz and T. J. Plona, J. Appl. Phys. 55, 3971–3977 (1984); L. Tsang, J.A. Kong, and T. Habashy, J. Acoust. Soc. Am. 71, 552-558 (1982).

    Article  ADS  Google Scholar 

  61. J. Liu, L. Ye, D. Weitz and P. Sheng, Phys. Rev. Lett. 65, 2602–2605 (1990).

    Article  ADS  Google Scholar 

  62. C.B. Guo, P. Holler and K. Goebbels, Acustica 59, 112–120 (1985).

    Google Scholar 

  63. R. L. Weaver, W. Sachse, K. Green, and Y. Zhang, Proceedings of Ultrasonics International 91, (Butterworth-Heinemann, Oxford, U.K., 1991) pp. 507–510; R. L. Weaver, in Non-Destructive Testing and Evaluation in Man-ufacturing and Construction, H. L. M. dos Reis, ed. Hemisphere 425-434 (1990)

    Google Scholar 

  64. F. J. Margetan, T. A. Gray and R. B. Thompson, Review of Progress in Quantitative Nondestructive Evaluation, 10, 1721–1728 (1991).

    Article  ADS  Google Scholar 

  65. K. Goebbels, Phil. Trans. R. Soc. London A320, 161–169 (1986); K. Goebbels, Chapter 4, p. 87-158 in Research Techniques in NDT IV, RS Sharpe, ed. (1980).

    ADS  Google Scholar 

  66. M. D. Russell, S. P. Neal, in Review of Progress in Quantitative Nondestructive Evaluation 16, (Plenum Press, NY, 1997).

    Google Scholar 

  67. K. Aki and B. Chouet, J. Geophys. Research 80, 3322–3342 (1975); M. Campillo, L. Margerin and N. M. Shapiro, in Diffuse waves in complex media J.-P. Fouque ed., 383-404 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  68. R. L. Weaver, Ultrasonics, 36, 435–442 (1998).

    Article  Google Scholar 

  69. R. L. Weaver, Phys Rev B 49, 5881–5895 (1994).

    Article  ADS  Google Scholar 

  70. C. H. Hodges, J. Sound Vibr. 82, 411 (1982); Localization and the Effects of Irregularities in Structures, special issue of Applied Mechanics Reviews 49, 111-120 (1996); C. Pierre, J. Sound Vibr. 139, 11 (1990); D. Li and H. Benaroya, Appl. Mech. Revs. 45, (11), 447-460 (1992).

    Article  ADS  Google Scholar 

  71. A. F. Vakakis and C. Cetinkaya, SIAM Journal of Applied Mathematics, 53, 265–282, (1993). O. Gendelman and A. F. Vakakis, Chaos Solitons and Fractals, 11, 1535-42 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. V. N. Prigodin, B. L. Altshuler, K. B. Efetov and S. Iida, Phys Rev Lett 72, 546–549 (1994); R. H. Lyon, J. Acoust. Soc. Am. 45, 546 (1969); R. L. Weaver and J. Burkhardt, J. Acoust. Soc. Am., 96, 3186-3190 (1994).

    Article  ADS  Google Scholar 

  73. R. L. Weaver, O. I. Lobkis, Phys. Rev. Lett. 84, 4942 (2000).

    Article  ADS  Google Scholar 

  74. The spectral statistics of flexural waves have been investigated in billiardshaped plates. [O. Legrand, C Schmit, and D Sornette, Europhysics Lett 18, 101 (1992); E Bogomolny and E Hughes, Phys Rev E 57, 5404 (1998).] These waves do not mode convert to extensional and SH waves at plate edges and flaws, unless something breaks the up/down mirror symmetry. Thus they constitute an independent diffuse field. Their boundary conditions are substantially different from those of the Helmholtz equation, and these waves therefore provide an independent confirmation of many of the notions of wave chaos theory. Their substantial loss rate to air and to thermoelastic relaxations have limited their usefulness.

    Article  ADS  Google Scholar 

  75. R. L. Weaver and O. I. Lobkis, J. Sound Vibr. 231, 1111–1134 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weaver, R.L. (2001). Wave Chaos in Elastodynamics. In: Sebbah, P. (eds) Waves and Imaging through Complex Media. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0975-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0975-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0372-1

  • Online ISBN: 978-94-010-0975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics