Skip to main content
  • 454 Accesses

Abstract

Long- and infinite range correlations C 2 and C 3 in the optical speckle pattern represent one of the most interesting phenomena in multiple scattering of light. Despite the strong scattering these correlations survive the averaging process of light diffusion and are even enhanced with increased randomness. In this article we are going to discuss the microscopic origin of these particular correlations which are explained in the simple picture of one and twofold crossing of multiple scattering paths. We present a comprehensive experimental study of dynamic speckle correlations, C 2(t) and C 3(t), where the phase shift between the multiple scattering paths is caused by the Brownian motion of the scattering particles. The shape and amplitude of the correlation functions C 2(t) and C 3(t) are in good overall agreement with theory. Deviations are found in the case of C 2(t) when correlations are generated close to the incoming surface which can be explained by single scattering contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson, Phil. Mag. 52 505 (1985); S. John, Phys. Rev. B 31, 304 (1985).

    Article  Google Scholar 

  2. S. John, Physics Today, May 1991, p.32–40.

    Google Scholar 

  3. M. P. van Albada and A. Lagendjik, Phys. Rev. Lett. 55, 2692 (1985).

    Article  ADS  Google Scholar 

  4. P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696, (1985).

    Article  ADS  Google Scholar 

  5. P. Sheng (Ed.): Scattering and localization of classical waves in random media, World Scientific, Singapore 1990, Ping Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press, Boston, 1995.

    Google Scholar 

  6. C. M. Soukoulis (Ed.): Photonic band gaps and localization, Nato ASI Series B, Physics 308, (Plenum, N.Y., 1993).

    Google Scholar 

  7. G. Maret in: Mesoscopic Quantum Physics, E. Akkermans, G. Montambaux, J-L. Pichard and J. Zinn-Justin, eds (Elsevier Science B. V., North Holland, 1995), p. 147.

    Google Scholar 

  8. D. S. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, Nature 390, 671 (1997).

    Article  ADS  Google Scholar 

  9. F. Scheffold, R. Lenke, R. Tweer and G. Maret, Nature 398, 206 (1999).

    Article  ADS  Google Scholar 

  10. F. J. P. Schuurmans, M. Megens, D. Vanmaekelbergh and A. Lagendijk, Phys. Rev. Lett 83, 2183 (1999).

    Article  ADS  Google Scholar 

  11. S. Feng, C. Kane, P. A. Lee and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

    Article  ADS  Google Scholar 

  12. R. Pnini and B. Shapiro, Phys. Rev. B 39, 6986 (1989).

    Article  ADS  Google Scholar 

  13. S. Feng and P. A. Lee, Science 251, 633 (1991).

    Article  ADS  Google Scholar 

  14. R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).

    Article  ADS  Google Scholar 

  15. M. C.W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).

    Article  ADS  Google Scholar 

  16. A. Z. Genack, N. Garcia, W. Polkosnik, Phys. Rev. Lett. 65, 2129 (1990).

    Article  ADS  Google Scholar 

  17. M. P. van Albada, J. F. de Boer and A. Lagendijk, Phys. Rev. Lett. 64, 2787 (1990).

    Article  ADS  Google Scholar 

  18. F. Scheffold, W. Härtl, G. Maret and E. Matijević, Phys. Rev. B 56, 10942 (1997).

    Article  ADS  Google Scholar 

  19. F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1999).

    Article  ADS  Google Scholar 

  20. C. P. Umbach et al., Phys. Rev. B. 30, 4048 (1984); R. A. Webb et al., Phys. Rev. Lett. 54, 2696 (1985).

    Article  ADS  Google Scholar 

  21. This differs by a factor of 2 from the original results for scalar waves [12] due to the two polarization states of electromagnetic waves [22].

    Google Scholar 

  22. J. F. de Boer, M. P. van Albada and A. Lagendijk, Phys. Rev. B 45, 658 (1992).

    Article  ADS  Google Scholar 

  23. G. Maret and P. E. Wolf, Z. Phys. B 65, 409 (1987); D. J. Pine, D. A. Weitz, P. M. Chaikin and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988); D. A. Weitz and D. J. Pine in Dynamic Light Scattering, W. Brown Ed. (Oxford Univ. Press, New York, 1993), pp 652-720.

    Article  ADS  Google Scholar 

  24. P. D. Kaplan, M. H. Kao, A. G. Yodh and D. J. Pine, Appl. Opt. 32, 21, 3828 (1993).

    ADS  Google Scholar 

  25. G. Maret, Curr. Opin. Coll. Int. Sci. 2, 251–257 (1997).

    Article  Google Scholar 

  26. S. Romer, F. Scheffold and P. Schurtenberger, submitted to Phys. Rev. Lett.

    Google Scholar 

  27. F. Scheffold and G. Maret, in preparation.

    Google Scholar 

  28. F. Scheffold, PhD thesis, University of Konstanz (1998).

    Google Scholar 

  29. We note that a first diagrammatic calculation of C 3 (t) has been published by Berkovits and Feng [14] but we were not able to reproduce their plots which are based on a complex combination of different diverging functions. Recently van Rossum and Nieuwenhuizen have presented an new calculation of C 3 (t) which has not been compared yet to the results of our simple integral approximation, Eq. (16) [15]. Attempts are now underway to do so [27].

    Google Scholar 

  30. Y-S. Her, E. Matijević and M. C. Chon, J. Mater. Res. 10, 12,3106 (1995).

    Article  ADS  Google Scholar 

  31. A. Garcia-Martin, F. Scheffold, M. Nieto-Vesperinas and J. J. Saenz, in preparation.

    Google Scholar 

  32. The prefactor to Eq. (12) and the value of β = 16/15 where determined by comparing the limiting cases [w ≪ L, w ≫ L] to the results of Eq. (6).

    Google Scholar 

  33. Mott, N. F. Metal Insulator Transitions (Taylor and Franzis, London, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scheffold, F., Maret, G. (2001). Dynamic Speckle Correlations. In: Sebbah, P. (eds) Waves and Imaging through Complex Media. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0975-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0975-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0372-1

  • Online ISBN: 978-94-010-0975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics