Advertisement

Giant Magneto-Impedance Effect in Amorphous Wires

  • Horia Chiriac
Chapter
Part of the NATO Science Series book series (NAII, volume 5)

Abstract

In the last decade the development of new materials exhibiting an important dependence of the resistance on the magnetic field was considered a topic of major interest, mainly due to the requirement for new applications. Between 1988 and 1992, an important advance in this field was represented by the discovery of giant magneto-resistance (GMR) in magnetic-nonmagnetic multilayers and granular systems [1, 2, 3]. Since 1992 a great attention was paid to the magneto-resistance effect in alternating current (100 Hz and 100 kHz) that appeared in amorphous ribbons and wires and whose values are of about 2 orders of magnitude larger than those obtained for the previous giant magnetoresistive materials [4, 5]. In 1994–1995 and later, an important series of papers trying to explain this phenomenon—called giant magneto-impedance (GMI) effect—were published [6, 7]. The GMI effect is very important for its applications and is very exciting to be explained. In the last years a large effort has been done to study this effect in new materials such amorphous ribbons, wires, glass-covered wires and thin films having different compositions and very reduced magnetostriction [8, 9, 10, 11, 12]. The influence of the mechanical stress, torque, annealing and magnetic annealing on the GMI effect were extensively investigated [13, 14, 15, 16]. The appearance of the GMI effect in nanocrystalline materials and in conventional crystalline materials as permalloy wires and thin films has been recently announced [17, 18, 19, 20, 21]. New models more and more complex, explaining this phenomenon have been developed recently [22, 23, 24, 25, 26, 27, 28]. Many applications of the GMI effect, especially in sensors and transducers are currently in development [29, 30, 31].

Keywords

Magnetic Anisotropy Amorphous Ribbon Material Science Forum Amorphous Wire Magnetic Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baibich, M. N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J. (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Physical Review Letters 61, 2472–2475.ADSCrossRefGoogle Scholar
  2. 2.
    Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., and Thomas, G. (1992) Giant magnetoresistance in heterogeneous Cu-Co alloys, Physical Review Letters 68, 3745–3748.ADSCrossRefGoogle Scholar
  3. 3.
    Machado, F. L. A, da Silva, B. L., Rezende, S.M., and Martins, C. S. (1994) Giant ac magnetoresistance in the soft ferromagnet Co70.4Fe4.6Si15B10, Journal of Applied Physics 75, 6563–6565.ADSCrossRefGoogle Scholar
  4. 4.
    Mohri, K., Kawashima, K., Kohzawa, T., and Yoshida, Y. (1992) Magnetoinductive effect (MI effect) in amorphous wires, IEEE Transactions on Magnetics 28, 3150–3152.ADSCrossRefGoogle Scholar
  5. 5.
    Beach, R.S. and Berkowitz, A. E. (1994) Giant magnetic field dependent impedance of amorphous FeCoSiB wire, Applied Physics Letters 64, 3652–3654.ADSCrossRefGoogle Scholar
  6. 6.
    Beach, R.S. and Berkowitz, A. E. (1994) Sensitive field-and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon, Journal of Applied Physics 76, 6209–6213.ADSCrossRefGoogle Scholar
  7. 7.
    Panina, L. V., Mohri, K., Uchiyama, T., and Noda, M. (1995) Giant magneto-impedance in Co-rich amorphous wires and films, IEEE Transactions on Magnetics 31, 1249–1260.ADSCrossRefGoogle Scholar
  8. 8.
    Panina, L. V., Mohri, K., Uchiyama, T, Bushida, K., and Noda, M. (1995) Giant magneto-impedance in Co-rich amorphous alloys, in M. Vázquez and A. Hernando (eds.), Nanostructured and Non-Crystalline Materials, World Scientific, Singapore, pp. 461–470.Google Scholar
  9. 9.
    Panina L. V. and Mohri K. 1995 High frequency giant magneto-impedance in Co-rich amorphous wires and films Journal of the Magnetics Society of Japan 19 265–268Google Scholar
  10. 10.
    Chiriac, H., Óvári, T. A., Marinescu, C.S. and Barariu, F. (1997) Giant magneto-impedance effect in CoFeSiB glass-covered magnetic amorphous wires, in P. Duhaj, P. Mrafko and P. Svec (eds.), Rapidly Quenched&Metastable Materials Supplement, Elsevier Science Publishers, The Netherlands, pp. 290–293.Google Scholar
  11. 11.
    Vázquez, M., Sinnecker, J. P., and Kurlyandskaya., G. V. (1999) Hysteresis behavior and anisotropy fields in the magneto-impedance effect, Materials Science Forum 302-303, 209–218.CrossRefGoogle Scholar
  12. 12.
    Chiriac, H., Óvári, T. A. and Marinescu, C. S. (1997) Comparative study of the giant magneto-impedance effect in CoFeSiB glass-covered and cold-drawn amorphous wires, IEEE Transactions on Magnetics 33, 3352–3354.ADSCrossRefGoogle Scholar
  13. 13.
    Velázquez, J., Vázquez, M., Chen, D. X., and Hernando, A. (1994) Giant magnetoimpedance in nonmagnetostrictive amorphous wires, Physical Review B 50, 16737–16740.ADSCrossRefGoogle Scholar
  14. 14.
    Kitoh, T., Mohri, K., Uchiyama, T. (1995) Asymmetrical magneto-impedance effect in twisted amorphous wires for sensitive magnetic sensors, IEEE Transactions on Magnetics 31, 3137–3139.ADSCrossRefGoogle Scholar
  15. 15.
    Kito, T., Bushida, K., and Mohri, K. (1995) Stress dependency of magneto-inductive and magneto-impedance effects in amorphous magnetic wires, Journal of the Magnetics Society of Japan 19, 537–540.CrossRefGoogle Scholar
  16. 16.
    Valenzuela, R., González, J., and Amano, E. (1997) Current annealing and magnetoimpedance in CoFeBSi amorphous ribbons, IEEE Transactions on Magnetics 33, 3925–3927.ADSCrossRefGoogle Scholar
  17. 17.
    Chen, C., Luan, K. Z., Liu, Y. H., and Mei, L. M. (1996) Giant magnetoimpedance effects in the soft ferromagnet Fe73.5CuNb3Si13.5B9, Physical Review B 54, 6092–6094.ADSCrossRefGoogle Scholar
  18. 18.
    Knobel, M., Chiriac, H., Sinnecker, J. P., Marinescu, S., Óvári, T. A., and Inoue, A. (1997) Comparative study of the giant magneto-impedance effect in Fe-based nanocrystalline ribbons, Sensors and Actuators A 59, 256–260.CrossRefGoogle Scholar
  19. 19.
    Chiriac, H., Óvári, T. A. and Marinescu, C. S. (1998) Giant magneto-impedance effect in nanocrystalline glass-covered wires, Journal of Applied Physics 83, 6584–6586.ADSCrossRefGoogle Scholar
  20. 20.
    Kurlyandskaya, G. V., García-Beneytez, J. M, Vászquez, M., Sinnecker, J. P., Lukshina, V. A., and Potapov, A. P. (1998) The influence of field-and stress-induced magnetic anisotropy on the magnetoimpedance in nanocrystalline FeCuNbSiB alloys, Journal of Applied Physics 83, 6581–6583.ADSCrossRefGoogle Scholar
  21. 21.
    Beach, R. S., Smith, N., Platt, C. L., Jeffers, F., and Berkowitz, A. E. (1996) Magneto-impedance effect in NiFe plated wire, Applied Physics Letters 68, 2753–2755.ADSCrossRefGoogle Scholar
  22. 22.
    Machado, F.L.A. and Rezende, S. M. (1996) A theoretical model for the giant magnetoimpedance in ribbons of amorphous soft-ferromagnetic alloys, Journal of Applied Physics 79, 6558–6560.ADSCrossRefGoogle Scholar
  23. 23.
    Yelon, A., Ménard, D., Britel, M., and Ciureanu, P. (1999) Modelling of giant magnetoimpedance from 1 Hz to 10 GHz, Materials Science Forum 302-303, 194–201.CrossRefGoogle Scholar
  24. 24.
    Usov, N., Antonov, A., and Granovsky, A. (1997) Theory of giant magneto-impedance effect in composite amorphous wire, Journal of Magnetism and Magnetic Materials 171, 64–68.ADSCrossRefGoogle Scholar
  25. 25.
    Atkinson, D. and Squire, P. T. (1997) Experimental and phenomenological investigation of the effect of stress on magneto-impedance in amorphous alloys, IEEE Transactions on Magnetics 33, 3364–3366.ADSCrossRefGoogle Scholar
  26. 26.
    Kraus, L. (1999) Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy, Journal of Magnetism and Magnetic Materials 195, 764-778 .Google Scholar
  27. 27.
    Kraus, L. (1999) The theoretical limits of giant magneto-impedance, Journal of Magnetism and Magnetic Materials 196-197, 354.Google Scholar
  28. 28.
    Ménard, D. and Yelon, A. (2000) Theory of longitudinal magnetoimpedance in wires, Journal of Applied Physics 88, 379–393Google Scholar
  29. 29.
    Vászquez, M., Knobel, M., Sánchez, M. L., Valenzuela, R., and Zhukov, A. P. (1997) Giant magnetoimpedance effect in soft magnetic wires for sensor applications, Sensors and Actuators A 59, 20–29.CrossRefGoogle Scholar
  30. 30.
    Mohri, K, Panina, L. V., Uchiyama, T., Bushida, K., and Noda, M. (1995) Sensitive and quick response magneto-impedance (MI) sensor using amorphous wires, IEEE Transactions on Magnetics 31, 1266–1275.ADSCrossRefGoogle Scholar
  31. 31.
    Mohri, K., Uchiyama, T., and Shen, L. P. (in press) Magneto-impedance (MI) and stress-impedance (SI) effects and sensitive micro magnetic sensor family for intelligent measurements&control, EMSA 2000 Conference Paper No. L1.Google Scholar
  32. 32.
    Landau, L. D. and Lifschitz, E. M. (1984) Electrodynamics of Continuous Mediam Pergamon Press, New York.Google Scholar
  33. 33.
    Melo, L.G.C. and Santos, A. D. (1999) Domain wall oscillations in GMI configuration, Materials Science Forum 302-303, 219–223.CrossRefGoogle Scholar
  34. 34.
    Chen, D.-X, Muñoz, J. L., Hernando, A, and Vázquez, M. (1998) Magnetoimpedance of metallic ferromagnetic wires, Physical Review B 57, 10699–10704.ADSCrossRefGoogle Scholar
  35. 35.
    Costa-Krämer, J.L. and Rao, K. V. (1995) Influence of magnetostriction on magneto-impedance in amorphous soft ferromagnetic wires, IEEE Transactions on Magnetics 31, 1261–1265.ADSCrossRefGoogle Scholar
  36. 36.
    Pirota, K. R., Sartorelli, M. L., Knobel, M., Gutierrez, I, and Barandiarán, J. M. (1999) Influence of induced anisotropy and magnetostriction on the giant magnetoimpedance effect and its aftereffect in soft magnetic amorphous ribbons, Journal of Magnetism and Magnetic Materials 202, 431–444Google Scholar
  37. 37.
    Pirota, K. R., Schoenmaker, J., Sartorelli, M. L., Knobel, M., Gutierrez, J., and Barandiarán, J. M. (1999) Influence of induced anisotropy and magnetostriction in the magnetoimpedance and its afftereffect in CoFeSiB amorphous ribbons, Materials Science Forum 302-303, 229–233.CrossRefGoogle Scholar
  38. 38.
    Pirota, K. R., Kraus, L., Chiriac, H., and Knobel, M. (in press) Magnetostriction and GMI in Joule-heated CoFeSiB glass-covered microwires, ICM 2000 Conference Paper No. 5S-34.Google Scholar
  39. 39.
    Vázquez, M., Kurlyandskaya, G. V., García-Beneytez, J. M., Sinnecker, J. P., Barandiarán, J. M., Lukshina, V.A., and Potapov, A.P. (1999) Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy, IEEE Transactions on Magnetics 35, 3358–3360.ADSCrossRefGoogle Scholar
  40. 40.
    Sommer, R.L. and Chien, C. L. (1995) Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys, Applied Physics Letters 67, 857–859.ADSCrossRefGoogle Scholar
  41. 41.
    Pokorný, J. and Kraus, L. (1997) GMI effect in amorphous wires with creep-induced magnetic anisotropy, Sensors and Actuators A 59, 65–69.CrossRefGoogle Scholar
  42. 42.
    Kraus, L., Medina, A. N., Gandra, F. G, Knobel, M., and Haslar, V. (1999) Creep-induced magnetic anisotropy of amorphous ribbons studied by magneto-impedance and magnetic resonance, Materials Science Forum 302-303, 224–228.CrossRefGoogle Scholar
  43. 43.
    Kraus, L., Knobel, ML, Hašlar, V., Medina, A, and Gandra, F. G. (1998) GMI effect in amorphous ribbons with creep-induced magnetic anisotropy, in V. Kose and J. Sievert (eds.), Non-Linear Electromagnetic Systems, IOS Press, pp. 329–332.Google Scholar
  44. 44.
    Tiberto, P., Vinai, F., Rampado, O., Chiriac, H., and Óvári, T. A. (1999) Giant magnetoimpedance effect in melt-spun Co-based amorphous ribbons and wires with induced magnetic anisotropy, Journal of Magnetism and Magnetic Materials 196-197, 388–390.ADSCrossRefGoogle Scholar
  45. 45.
    Kawashima, K., Ogasawara, I., Ueno, S., and Mohri, K. (1999) Asymmetrical magneto-impedance effect in torsion-annealed Co-rich amorphous wire for MI micro magnetic sensor, IEEE Transactions on Magnetics 35, 3610–3612.ADSCrossRefGoogle Scholar
  46. 46.
    Chiriac H. Marinescu C. S Óvári T. A. 1999 Temperature dependence of the magneto-impedance effect Journal of Magnetism and Magnetic Materials 196-197 162–163Google Scholar
  47. 47.
    Panina, L. V., Mohri, K., Bushida, K., and Noda, M. (1994) Giant magneto-impedance and magneto-inductive effects in amorphous alloys, Journal of Applied Physics 76, 6198–6203.ADSCrossRefGoogle Scholar
  48. 48.
    Chiriac H. Vinai F. Óvári T. A. Marinescu C. S. Barariu F. and Tiberto P. 1997 Comparative study of the giant magneto-impedance effect in CoFeSiB magnetic amorphous ribbons and wires Materials Science and Engineering A 226-228 646–649Google Scholar
  49. 49.
    Vázquez, M., Garcia-Beneytez, J. M, and Sinnecker, J. P. (1998) Magneto-impedance effect in high permeability NiFeMo permalloy wires, Journal of Applied Physics 83, 6578–6580.ADSCrossRefGoogle Scholar
  50. 50.
    Kurlyandskaya, G. V., Barandiarán, J. M., Gutiérrez, J., García, D., Vázquez, M., and Vas’kovskiy, V. O. (1999) Magnetoimpedance effect in CoFeNi plated wire with ac field annealing destabilized domain structure, Journal of Applied Physics 85, 5438–5440.ADSCrossRefGoogle Scholar
  51. 51.
    Chiriac, H., Óvári, T.A. and Marinescu, C. S. (1999) Magneto-impedance effect in amorphous and nanocrystalline glass-covered wires, Journal of the Magnetics Society of Japan 23, 147–149.CrossRefGoogle Scholar
  52. 52.
    Pirota, K. R., Kraus, L., Chiriac, H., and Knobel, M. (in press) Magnetic properties and GMI in a joule-heated CoFeSiB glass-covered microwire, Journal of Magnetism and Magnetic Materials.Google Scholar
  53. 53.
    Morikawa, T., Nishibe, Y., Yamadera, H., Nonomura, Y, Takeuchi, M., Sakata, J., and Taga, Y. (1996) Enhacement of giant magneto-impedance in layered film by insulator separation, IEEE Transactions on Magnetics 32, 4965–4967.ADSCrossRefGoogle Scholar
  54. 54.
    Mohri, K., Uchiyama, T., and Panina, L.V (1997) Recent advances of micromagnetic sensors and sensing application”, Sensors and Actuators A 59, 1–8.CrossRefGoogle Scholar
  55. 55.
    Furuta, A., Sompob, P., Mohri, K., and Kaneshige, K. (1999) Accurate detection of secondary current in shaft hole of induction motors for reliable controls, IEEE Transactions on Magnetics 35, 3595–3597.ADSCrossRefGoogle Scholar
  56. 56.
    Óvári, T. A., Chiriac, H., and Marinescu, C. S. (unpublished paper) Giant magneto-impedance effect in circular configuration. A novel magnetic field, 44th MMM Conference 1999 Paper No. AF-07.Google Scholar
  57. 57.
    Óvári, T. A., Chiriac, H., Marinescu, C. S., Castaño, F. J., Vázquez, M., and Hernando, A. (in press) Magneto-impedance response in ring shaped amorphous wires, EMSA 2000 Conference Paper No. L3.Google Scholar
  58. 58.
    Kurlyandskaya, G. V, García-Arribas, A., Barandiarán, J. M., and Kisker, E. (in press) Giant magnetoimpedance strip and coil sesnsors, EMSA 2000 Conference Paper No. L2.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Horia Chiriac
    • 1
  1. 1.National Institute of Research and Development for Technical PhysicsIasiRomania

Personalised recommendations