Review of Deformation Capacity of Joints Related to Structural Reliability

  • C. M. Steenhuis
  • H. H. Snijder
  • F. Van Herwijnen
Part of the NATO Science Series book series (NAII, volume 4)


Design rules in modern design codes on steel and composite construction, like the Eurocodes, are nowadays calibrated with reliability studies. The reliability studies focus very much on the resistance of the structures. The structural reliability however also depends on the rotation capacity of the (semi-rigid) joints in the structure.


Composite Beam Steel Beam Structural Reliability Shear Connector Deformation Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eurocode 3 (1998) Design of Steel Structures Part 1.1. General Rules for Buildings. Revised Annex J, ENV 1993-1-1/A2, CEN, Brussels.Google Scholar
  2. 2.
    Kuhlmann, U., Davison, J.B. and Kattner, M., (1998) Structural Systems and Rotation Capacity, proceedings COST C1 international conference, Liège, pp 167–176.Google Scholar
  3. 3.
    Kuhlmann, U., in J.P. Jaspart (1999) Recent Advances in the Field of Structural Steel Joints and their Representation in the Building Frame Analyses and Design Process, COST Cl Brussels.Google Scholar
  4. 4.
    ECCS (1999) Composite Steel-concrete Joints in Frames for Buildings: Design Provisions, ECCS Publication 109, Brussels.Google Scholar
  5. 5.
    Huber G. and Tschemmernegg, F. (1998) Classification and Assessment of Joints, COST Cl/WD2/98-02, Thessaloniki.Google Scholar
  6. 6.
    Jaspart, J.P. (1991) Etude de la Semi-rigidité des Nœuds Poutre-Colonne et son Influence sur la Résistance et la Stabilité des Ossatures en Acier, Ph-D Thesis, University of Liège, Liège.Google Scholar
  7. 7.
    Zanon, P. and Zandonini, R. (1988) Experimental Analysis of End Plate Connections, Proceedings of the state of the art workshop on connections and the behaviour of strength and design of steel structures, Cachan, pp. 41 -51.Google Scholar
  8. 8.
    Weynand, K. (1997) Sicherheits- und Wirtschaftlichkeitsuntersuchungen zur Anwendung Nachgiebiger Anschlüsse im Stahlbau, Heft 35, Shaker Verlag, Aachen.Google Scholar
  9. 9.
    Crisinel, M. and Kattner, M. (1999) Verfügbare Rotation von Verbundsknoten,in G. Huber and Th. Michl, Festschrift Prof. Dr. Ferdinand Tchemmernegg, University of Innsbruck, Innsbruck, pp. 419–432.Google Scholar
  10. 10.
    Boender, E., Steenhuis, C.M. and Stark, J. (1996) The Required Rotation Capacity of Joints in Braced Steel Frames, proceedings of the IABSE Semi-Rigid Structural Connections Colloquium, Istanbul, pp. 259–268.Google Scholar
  11. 11.
    Li, T.Q., Choo, B.S. and Nethercot, D. (1995) Determination of Rotation Capacity Requirements for Steel and Composite beams, Journal of Constructional Steel Research, No 32, Malta, pp. 303–332.Google Scholar
  12. 12.
    Nethercot, D., Li, T.Q. and Choo, B.S. (1995) Required Rotations and Moment Distributions for Composite Frames and Continuous Beams, Journal of Constructional Steel Research, No 35, Malta, pp. 121–163.Google Scholar
  13. 13.
    Voorn, W.J.M. (1971) Welded Beam-to-Column Joints in Braced Frames (in Dutch), Rapport IBBC TNO BI-71-24, Delft.Google Scholar
  14. 14.
    Anderson, D., Aribert, J-M. and Kronenberger, H.-J. (1999) Rotation Capacity of Composite Joints, in R. Maquoi, Control of the Semi-Rigid Behaviour of Civil Engineering Structural Connections, COST C1, Brussels, pp. 177–186.Google Scholar
  15. 15.
    Xiao, Y. and Anderson, D. (1994) Review of the Research in the United Kingdom on Composite Semi-rigid Joints, in F. Wald (ed.) Proceedings of the second state of the art workshop COST C1, Brussels.Google Scholar
  16. 16.
    CEB-FIB (1990) Model Code 1990, Lausanne.Google Scholar
  17. 17.
    Aribert, J.-M. (1996) Influence of Slip of the Shear Connection on Composite Joint Behaviour, in R. Bjorhovde et al. (ed), Connections in Steel Structures III: Behaviour, Strength and Design, Pergamon, pp. 11–22.CrossRefGoogle Scholar
  18. 18.
    Ren, P. and Crisinel, M. (1996) Prediction Method for the Moment Rotation Behaviour of Composite Beam to Steel Column Connection, in R. Bjorhovde et al. (ed), Connections in Steel Structures III: Behaviour, Strength and Design, Pergamon, pp. 11–22.Google Scholar
  19. 19.
    Vrouwenvelder, A.C.W.M. and Siemes, A.J. (1987) Probabilistic Calibration Procedure for the Derivation of Partial Safety Factors for The Netherlands Building Codes. Heron No. 32(4), Delft,.pp. 9–29.Google Scholar
  20. 20.
    Schneider, J. (1997) Introduction to Safety and Reliability of Structures, IABSE Structural Engineering Document 5, ZurichGoogle Scholar
  21. 21.
    Eurocode 1 (1992) ENV 1991-1-1, Basis of design, CEN, Brussels.Google Scholar
  22. 22.
    Kemp, A.R. (1999) A limit State Criterion For Ductility of Class 1 and Class 2 Composite and Steel Beams, in D. Dubina (ed.) Stability and Safety Of Steel Structures, Elsevier Science Ltd, pp. 291–298.Google Scholar
  23. 23.
    Kemp, A.R., Dekker, N.W. (1991) Available Rotation Capacity in Steel and Composite Beams, The Structural Engineer, 65:5, London, pp. 96–101.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • C. M. Steenhuis
    • 1
  • H. H. Snijder
    • 1
  • F. Van Herwijnen
    • 1
  1. 1.Faculty of Architecture, Building and Planning Department of Structural DesignEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations