Skip to main content

EXCITONS, LOCALIZED STATES IN SILICON DIOXIDE AND RELATED CRYSTALS AND GLASSES

  • Chapter
Defects in SiO2 and Related Dielectrics: Science and Technology

Part of the book series: NATO Science Series ((NAII,volume 2))

Abstract

The excitons, localized states in crystalline and glassy silicon dioxide, germanium dioxide were studied by photoluminescent and photoelectric experimental methods. Results were compared with analogous investigations of related crystals, such as aluminum and gallium orthophosphates, and of related glasses, such as silica, sodium silicates, germanates, lead and phosphates glasses. Special attention was made to the influence of oxygen deficiency on localized states of glasses, in general, and to the nature of the 7.6 eV band in reduced silica, in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knox, R. (1963) Theory of Excitons, New-York, Academic Press

    Google Scholar 

  2. Agranovich, V.M. (1968) Theory of Excitons, Moskwa, Nauka.

    Google Scholar 

  3. Lushchik, Ch.B. (1982) Excitons In Solids, Sturge, North Holland.

    Google Scholar 

  4. Song, K.S. Williams, R.T. (1992) Self-trapped excitons. Springer-Verlag.

    Google Scholar 

  5. Trukhin, A.N. (1992) Excitons in SiO2: a review, J.Non-Crystalline Solids 149, 32–35.

    Article  CAS  Google Scholar 

  6. Sumi, A. (1977) Phase diagram of an exciton in the phonon field, J.Phys.Soc. Japan, 43,1286.

    Article  Google Scholar 

  7. Toyozawa, Y.A. (1964) The Urbach rule and the exciton-lattice interaction, Techn. Report. ISSP, Al, 119–168.

    Google Scholar 

  8. Philipp, H.R.(1966) Optical transitions in crystalline and fused quartz, Solid State Commun. 4, 73–75.

    Google Scholar 

  9. Pajasova, L. (1969) Optical properties of GeO2 in the ultraviolet region, Czech. J. Phys., B19, 1265–1270.

    Article  Google Scholar 

  10. Zallen, R. (1983). Physics of Amorphous Solids, New York, John Willey&sons.

    Book  Google Scholar 

  11. Kink, R.A. Lohmus, A.E. (1976) Exciton states in crystalline Xe, Fizika nizkikh temperatur, 2, 277–280.

    CAS  Google Scholar 

  12. Trukhin, A.N. Silin, A.R. and Zakis, J.R. (1988) Comparison of electronic excitations and of luminescence in glassy and crystalline silicon dioxide, Izvestia Akademii Nauk SSSR (Report of Sov.Academy of Science) 52, 697–702.

    CAS  Google Scholar 

  13. Weinberg Z., Rubloff., G.W. Bassous, E. (1979) Transmission, photoconductivity, and experimental band gap of thermally grown SiO2 film, Phys.Rev. 19, 3107–3117.

    Article  CAS  Google Scholar 

  14. Trukhin, A.N. (1982) Model of excitons in SiO2, Fiz.Tverdogo Tela (Sov.Sol.St.Phys.) 24, 993–997.

    CAS  Google Scholar 

  15. Trukhin, A.N. (1980) Study of exciton in SiO2. Luminescent centers as exciton detector Phys.Stat.Solidi, b, 98, 541–550.

    Article  Google Scholar 

  16. Godmanis, I.T. Trukhin, A.N. and Hubner, K. (1983) Exciton-phonon interaction in crystalline and vitreous SiO2, Phys.Stat.Sol b, 116, 279–287.

    Google Scholar 

  17. Itoh, C. Tanimura, K. Itoh, N. Itoh, M. (1989) Threshold energy for photogeneration of self-trapped excitons in SiO2, Phys. Rev. B 39, 11183–11186.

    Google Scholar 

  18. Reily, M. (1970) Remperature dependence of the short wavelength transmittance limit of vacuum ultravioler window materials, J.Phys.Chem. Sol, 31 1041–1056.

    Article  Google Scholar 

  19. Pantelides, S.T. (1978) the optical absorption spectrum of SiO2, The Physics of SiO2 and its Interfaces, ed.S.T. Pantelides, Pergamon Press

    Google Scholar 

  20. Trukhin, A.N. (1993) Luminescence of a self-trapped exciton in GeO2 crystal, Solid State Communication 85, 723–728.

    Article  CAS  Google Scholar 

  21. Trukhin, A.N. (1994) Evidences of the self-trapped excitons in GaPO4 and A1PO4 crystals, Solid State Communication 90, 795–80.

    Article  Google Scholar 

  22. V. Puchin, (1994). Ab intio calculations of AIPO4 crystals band straucture, privat communications.

    Google Scholar 

  23. Griscom, D.L. (1979) Point defests and radistion damage pricesses in a—quartz, 32nd Freq.Control Symp. Electr. Indust Assn., W-DC, p.98–108.

    Google Scholar 

  24. Hayes, W. Kane, M.J. Salminen, O. Wood, R.L. Doherty, S.P. (1984) ODMR of recombination centers in crystalline quartz, J.Phys.C, 17,2943–2951.

    Article  CAS  Google Scholar 

  25. Trukhin, A.N. (1986) A host and an impurity luminescence of crystalline quartz, Fizika Tverdogo Tela (Sov.Sol St.Phys.) 28, 1460–1464.

    CAS  Google Scholar 

  26. Hayes, W., Jenkin, T.J.L (1985) Paramagnetic hole centers produced in germanium-doped crystalline quartz by x-irradiation at 4 K, J.Phys.C: Sol.St.Phys., 21, 2391–2399.

    Article  Google Scholar 

  27. Griscom, D.L. (1992) Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide, J..Non-Crystalline Solids 149, 137–160.

    Article  CAS  Google Scholar 

  28. Trukhin, A.N. Rogulis, U. Spriniis, M. (1997) Self-trapped excitons in Li2GeO3, Journal of Luminescence, 72-74, 890–892.

    Article  CAS  Google Scholar 

  29. Trukhin, A.N., (1991) Luminescence kinetics in crystalline and glassy silicon dioxide, J. of Applied Spectroscopy (in Russian), 55, 800–805.

    CAS  Google Scholar 

  30. Higashi, G.S. Kastner, M. (1979) Charged defect-pair luminescence in a-As2S3, J.Phys.C 12 L821–L826.

    Article  CAS  Google Scholar 

  31. Trukhin, A.N. (1987) Temperature dependence of luminescence decay kinetics of self-trapped excitons, germanium and aluminum centers in quartz Phys. Stat.Solidi (b), 142, K83–K88.

    Article  Google Scholar 

  32. Shluger, A.L. and Stefanovich, E. (1990) Models of the self-trapped exciton and nearest-neighbor defect pair in SiO2. Phys. Rev., B42, 9664–9673.

    Google Scholar 

  33. Fisher, A.J. Hayes, W. and Stoneham, A.M., (1990) Structure of the self-trapped exciton in quartz, Phys. Rev.Letters, 64, 2667–2670.

    Article  CAS  Google Scholar 

  34. Itoh, C. Tanimura, K. Itoh, N. (1998) Optical studies of self-trapped excitons in SiO2, J. Phys. C: Solid State Phys. 21, 4693–4702.

    Article  Google Scholar 

  35. Trukhin, A.N. (1991) Luminescence of the self-trapped exciton in crystalline and glassy silicon dioxide, Soviet Solid State Physics, 33, 2888–2895.

    CAS  Google Scholar 

  36. Trukhin, A.N. (1994) Self-trapped exciton luminescence in α-quartz, Nuclear Instruments am Methods in physics research, B 91, 334–337.

    Article  Google Scholar 

  37. Anderson, P.W. (1958) Absence of diffusion in certain random lattices, Phys.Rev. 109, 1492–1503.

    Article  CAS  Google Scholar 

  38. Mott, N.F. Davis, E.A. (1971) Electronic processes in non-crystalline materials, Oxford.

    Google Scholar 

  39. Glebov, L.B. Popova, L.B. Tolstoi, M.N. Rusan, V.V. (1976) Preparation of high purity sodium-silicate glasses, Sov. Phys. Chem. Glasses, 2, 569–571.

    CAS  Google Scholar 

  40. Gelmont, B.L. Perel, V.I. Jassievich, I.N. (1983) About Urbach rule, Sov.Sol.State Phys. 25 727–733.

    CAS  Google Scholar 

  41. Mackey, Y.H. Smith, H.L. Halperin, A. (1966) Optical studies in X-radiated high purity sodium-silicate glasses, J.Phys.Chem. Sol. 17, 1759–1772.

    Article  Google Scholar 

  42. Trukhin, A.N. Rudenko, V.S. (1987) Investigation of the spectral kinetic properties of luminescence centers created by non-bridging oxygen and one valent metal ion, Sov. Phys.Chem.Glasses, 13, 236–241.

    CAS  Google Scholar 

  43. Skuja, L.N. Silin, A.R. Boganov, A.G. (1984) On the nature of the 1.9 eV luminescence centers in amorphous SiO2 J.Non-Crystalline Solids, 63, 431–436.

    Article  CAS  Google Scholar 

  44. Trukhin, A.N. L.B. Glebov, O.S. Schavelev, A.G. Golovin, (1991) Investigation of Fluorescence and Phosphorescence of Glasses under X-ray Excitation, (Annual Report, Riga, University of Latvia,) p. 10–43.

    Google Scholar 

  45. Glebov, L.B. Plukhin, A.G. Raaben, E.L. Tolstoi, M.N. Trukhin, A.N. (1990) Luminescence of lead in silicate glasses, Phys.Chem. Glass.(Sov.) 16, 245–252.

    CAS  Google Scholar 

  46. Trukhin, A.N. (1990) Localized states of silicon dioxide, sodium and leadsilicate glasses J.Non-Cryst.Sol. 123, 250–257.

    Article  CAS  Google Scholar 

  47. Grabovskis, V.J. Dzenis, J.J. Kovaleva, N.S. Tolstoi, M.N. (1990) Intrinsic absorption and luminescence of phosphate glasses, Solid State Physics (Sov), 32, 2953–2959.

    CAS  Google Scholar 

  48. Trukhin, A.N. Kûlis, P.A. (1995) Localized states in germanate glasses. Ultraviolet absorption tail of crystalline and glassy germanium dioxide and alkali germanate. Journal of Non-Crystalline Solids, 188, 125–129.

    Article  CAS  Google Scholar 

  49. Stapelbroek, M. Evans, B.D. (1978) Exciton structure in the UV. Absorption edge of tetragonal GeO2. Sol. St. Commun. 25 959–962.

    Article  CAS  Google Scholar 

  50. Trukhin, A.N. (1995) Localized states in germanate glasses. Study of luminescence, Journal of Non-Crystalline Solids, 189, 291–296.

    Article  CAS  Google Scholar 

  51. Skuja, L.N. (1989) Photoluminescence of intrinsic defects in glassy GeO2. Twofold coordinated Ge and Non-bridging oxygen, Phys.Stat.Sol. (a), 114, 731–737.

    Article  CAS  Google Scholar 

  52. Bohm, H. (1970) On the thermoluminescence of vitreous GeO2, Phys.Chem.Glass. 11, 177.

    Google Scholar 

  53. Nelson, C.M. and Weeks, R.A. (1961) Vacuum-ultraviolet absorption studies of irradiated silica and quartz, J.Appl.Phys. 32, 883–886.

    Article  CAS  Google Scholar 

  54. Zakis, J.R. and Trukhin, A.N. (1973) Photoluminescence of quartz excited by vacuum-ultraviolet radiation, Scientific Reports of the Latvian University, 182, 50–54.

    CAS  Google Scholar 

  55. Trukhin, A.N. Boganov, A.G. Praulinsh, A.M. (1979) On the nature of the 395 and 280 nm luminescence centers in glassy SiO2, Phys.Chem. Glass.(Sov.) 6, 346–353.

    Google Scholar 

  56. Skuja, L.N. Streletsky, A.N. Pakovich, A.B. (1984) A new intrinsic defect in amorphous SiO2, Solid State Commun. 50, 1069–1072.

    Article  CAS  Google Scholar 

  57. Skuja, L.N. Trukhin, A.N. Plaudis, A.E. (1984) Luminescence in germanium-doped glassy SiO2, Phys.Stat.Sol.(a) 84, K153–K157.

    Article  CAS  Google Scholar 

  58. Gee, CM. Kastner, M. (1979) Intrinsic-defect photoluminescence in amorphous SiO2, Phys.Rev.Lett. 42,1765–1769.

    Article  CAS  Google Scholar 

  59. Tohmon, R. Mizuno, H. Ohki, Y. Sagane, K. Nagasawa, K. Hama, Y. (1989) Correlation of the 5.0-and 7.6 absorption bands in SiO2 with oxygen vacancy, Phys.Rev. 39, 1337–1344.

    Article  CAS  Google Scholar 

  60. Boganov, A.G. Dianov, E.M. Kornienko, L.S. Nikitin, E.P. Rudenko, V.S. Rybaltovsky, A.O. Chernov, P.V. (1977) Water-free silica glass for optical fibers and radiation and optical properties, Quantum Electronics (Sov.) 4, 996–1003.

    CAS  Google Scholar 

  61. Skuja, L. (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide, J.Non-Crystalline Solids, 239 16–48.

    Article  CAS  Google Scholar 

  62. Griscom, D. L. (1997) Visible/Infra-red absorption study in fiber geometry of metastable defect states in high-purity fused silicas, Material Science Forum Volumes, 239-241, 19–24.

    Article  CAS  Google Scholar 

  63. Trukhin, A.N. (1995) Localized states in wide gap glasses. Comparison with relevant crystals, J.Non-Crystalline Solids, 189, 1–15.

    Article  CAS  Google Scholar 

  64. Xu, Y. Ching, W. Y. (1991) Electronic and optical propertiex of all polymorphic forms of silicon dioxide, Phys. Rev. 44, 11048–11059.

    Article  CAS  Google Scholar 

  65. Trukhin, A.N. Fitting, H.-J. (1997) Investigation of optical and radiation properties of oxyged deficient silica glasses, Bragg Gratings, Photosensitivity, and Poling in Glass fibers and Waveguides: Applications and Fundamentals, Topical Meeting of the Optical Society of America OSA, Williamsburg USA, Oct., technical digest series volum 17, p.89–91.

    Google Scholar 

  66. Trukhin, A.N. Fitting, H.-J. (1999) Investigation of optical and radiation properties of oxygen deficient silica glasses, J.Non-Crystalline Solids, 248, 49–64.

    Article  CAS  Google Scholar 

  67. Trukhin, A.N. Skuja, L.N. Boganov, A.G. Rudenko, V.S. (1992) The correlation of the 7.6 eV optical absorption band in pure fused silicon dioxide with twofold-coordinated silicon, J.Non-Crystalline Solids, 149, 96–101.

    Article  CAS  Google Scholar 

  68. Imai, H. Arai, K. Imagawa, H. Hosono, H. Abe. Y. (1988) Experimental evidence for Si-Si bond model of the 7.6-eV band in SiO2 glass, Phys. Rev. B 38, 12772–12775.

    Article  CAS  Google Scholar 

  69. Trukhin, A.N. Fitting, H.-J. Barfels, T. von Czarnovski, A. (1999) Cathodoluminescence and IR absorption of oxygen deficient silica—influence of hydrogen treatment, Journal of Non-Crystalline Solids, 260, 132–140.

    Article  CAS  Google Scholar 

  70. Shelby J.E., (1994) Protonic species in vitreous silica, in R.A. Weeks Symposium volume of J.Non-Crystalline Solids, 179, 138–147.

    Article  CAS  Google Scholar 

  71. Imai, H. Arai, K. Hosono, H. Abe, Y. Arai, T. Imagawa, H. (1991) Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses, Phys. Rev. B 44, 4812–4818.

    Article  CAS  Google Scholar 

  72. Silin, A.R. Trukhin, A.N. (1985) Elementary Electronic Excitations and Point Defects in Crystalline and Glassy SiO2, Zinatne Press, Riga.

    Google Scholar 

  73. Goldberg, M. Trukhin, A.N. Fitting, H.-J. (1996) Dose effects of cathodoluminescence in SiO2 layers on Si, Material Science&Engineering B 42, 293–296.

    Article  Google Scholar 

  74. Goldberg, M. Fitting, H.-J. Trukhin, A.N. (1997) Cathodoluminescence and cathodoelectroluminescence of amorphous SiO2, J.Non-Crystalline Solids, 220, 69–77.

    Article  CAS  Google Scholar 

  75. Trukhin, A.N. Goldberg, M. Jansons, J. Fitting, H.-J. Tale, I.A. (1998) Silicon dioxide thin film luminescence in comparison with bulk silica, J.Non-Crystalline Solids, 223, 114–122.

    Article  CAS  Google Scholar 

  76. Miller, A.J. Leisure, R.G. Austin, W.R. (1999) X-ray induced luminescence of high-purity, amorphous silicon dioxide, Journal of Applied Physics, 86, 2042–2050.

    Article  CAS  Google Scholar 

  77. Skuja, L. (1994) The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2, J.Non-Crystalline Solids, 179, 51–69.

    Article  CAS  Google Scholar 

  78. A.N. Trukhin, H.-J. Fitting, T. Barfels, A. Veispals, (1999) Defect luminescence study in tetragonal GeO2 crystals, Defects and surface induced effects in advanced provskites., Ed.G. Borsel, A. Krumins, D. Miller, Kluwer Academic Publisher, 379–386.

    Google Scholar 

  79. Garino-Canino, V. (1956) La band d’absorption à 242 nm de la silice vitreuse, Compte Rendue, 242, 1982–1984.

    Google Scholar 

  80. Trukhin, A.N. Poumellec, B. Garapon, J. (1999) Luminescence decay kinetics of Ge related center in silica, Radiation Effects and Defects in Solids, 149, 89–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trukhin, A.N. (2000). EXCITONS, LOCALIZED STATES IN SILICON DIOXIDE AND RELATED CRYSTALS AND GLASSES. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics