Skip to main content

The role and regulation of D-type cyclins in the plant cell cycle

  • Chapter
The Plant Cell Cycle

Abstract

The G1 phase of the cell cycle represents a period of commitment to cell division, both for cells stimulated to resume division from a resting or quiescent state, and for cells involved in repeated cell cycles. During this period, various signals that affect the cells’ ability to divide must be assessed and integrated. G1 culminates in the entry of cells into S phase, when DNA replication occurs. In addition, it is likely that several types of differentiation decision may be taken by cells in the G1 phase. In both animals and plants, it appears that D-type cyclins play an important role in the cell cycle responses to external signals, by forming the regulatory subunit of cyclin-dependent kinase complexes. The phosphorylation targets of D-cyclin kinases in mammalian cells are the retinoblastoma (Rb) protein and close relatives. Unphosphorylated Rb can associate with E2F transcription factors, preventing transcription of genes under E2F control until the G1/S boundary is reached. The conservation of Rb and E2F proteins in plants suggests that this pathway is therefore conserved in all higher eukaryotes, although it is absent in fungi and yeasts. Here we review the current understanding of the roles and regulations of D-type (CycD) cyclins in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach, R.A., Durfee T., Miller, A.B., Taranto, P., Hanley-Bowdoin, L., Zambryski, P.C. and Gruissem. W. 1997a. RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol. Cell. Biol. 17: 5077–5086.

    PubMed  CAS  Google Scholar 

  • Ach, R.A., Taranto, P. and Gruissem, W. 1997b. A conserved family of WD-40 proteins bind to the retinoblastoma protein in both plants and animals. Plant Cell 9: 1595–1606.

    PubMed  CAS  Google Scholar 

  • Ajchenbaum, F., Ando, K., DeCaprio, J.A. and Griffin, J.D. 1993. Independent regulation of human D-type cyclin gene expression during G1 phase in primary human T-lymphocytes. J. Biol. Chem. 268:4113–4119.

    PubMed  CAS  Google Scholar 

  • Ando, K., Ajchenbaum-Cymbalista, F. and Griffin, J.D. 1993. Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc. Natl. Acad. Sci. USA 90: 9571–9575.

    Article  PubMed  CAS  Google Scholar 

  • Baldin, V., Lukas, J., Marcote, M.J., Pagano, P. and Draetta, G. 1993. Cyclin D1 is a nuclear protein required for cell cycle progression in Gl. Genes Dev. 7: 812–821.

    Article  PubMed  CAS  Google Scholar 

  • Bartkova, J., Rajpert-De Meyts, E., Skakkebaek, N.E. and Bartek, J. 1999. D-type cyclins in adult human testis and testicular cancer: relation to cell type, proliferation, differentiation, and malignancy. J. Path. 187: 573–581.

    Article  PubMed  Google Scholar 

  • Bayliss, M.W. 1985. Regulation of the cell division cycle in cultivated plant cells. In: J.A. Bryant and D. Francis (Eds.) The Cell Division Cycle in Plants, Cambridge University Press, Cambridge, UK, pp. 157–177.

    Google Scholar 

  • Brehm, A. and Kouzarides, T. 1999. Retinoblastoma protein meets chromatin. Trends Biochem. Sci. 24: 142–145.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, M., Meskiene, I., Bogre, L., Ha, D.T.C., Swoboda, I., Hubmann, R., Hirt, H. and Heberle-Bors, E. 1995. The D-type alfalfa cyclin gene cycMs4 complements G 1 cyclin-deficient yeast and is induced in the Gl phase of the cell cycle. Plant Cell 7: 1847–1857.

    PubMed  CAS  Google Scholar 

  • De Veylder, L., Segers, G., Glab, N., Van Montagu, M. and Inzé, D. 1997. Identification of proteins interacting with the Arabidopsis Cdc2aAt protein. J. Exp. Bot. 48: 2113–2114.

    Article  Google Scholar 

  • De Veylder, L., Van Montagu, M. and Inzé, D. 1998. Cell cycle control in Arabidopsis. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 1–20.

    Google Scholar 

  • De Veylder, L., de Almeida Engler, J., Burssens, S., Manevski, A., Lescure, B., Van Montague, M., Engler, G. and Inzé, D. 1999. A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta 208: 453–462.

    Article  PubMed  Google Scholar 

  • DeCaprio, J.A., Furukawa, Y., Ajchenbaum, F., Griffin, J.D. and Livingston, D.M. 1992. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc. Natl. Acad. Sci. USA 89: 1795–1798.

    Article  PubMed  CAS  Google Scholar 

  • Doerner, P. 1999. Shoot meristem: intercellular signals keep the balance. Curr. Biol. 9: R377–R380.

    Article  PubMed  CAS  Google Scholar 

  • Doerner, P., Jorgensen, J.E., You, R., Steppuhn, J. and Lamb, C. 1996. Root growth and cyclin control. Trends Plant Sci. 1: 211–212.

    Google Scholar 

  • Doonan, J.H. 1998. Cell division during floral development in Antirrhinum majus. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 207–222.

    Google Scholar 

  • Dowdy, S.F., Hinds, P.W., Louie, K., Reed, S.I., Arnold, A. and Weinberg, R.A. 1993. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73: 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Dyson, N. 1998. The regulation of E2F by pRb-family proteins. Genes Dev. 12: 2245–2262.

    Article  PubMed  CAS  Google Scholar 

  • Ewen, M.E., Sluss, H.K., Sherr, C.J., Matsushime, H., Kato, J. and Livingston, D.M. 1993. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Fountain, M.D., Murray, J.A.H. and Beck, E. 1999. Nucleotide sequence of a cDNA encoding a cyclin D3 protein (Accession No. AJ011776) from suspension cultured photoautotrophic Chenopodium rubrum L. cells. Plant Physiol. 119: 363.

    Article  Google Scholar 

  • Francis, D. 1998. Cell size and organ development in higher plants. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 187–206.

    Google Scholar 

  • Fuerst, R.A.U., Soni, R., Murray, J.A.H. and Lindsey, K. 1996. Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol. 112: 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin, V., Fobert, P., Lunness, T., Riou-Khamlichi, C., Murray, J.A.H., Coen, E. and Doonan, J.H. 2000. CycD cyclins are expressed in distinct proliferative zones of Antirrhinum meristems. Plant Physiol., in press.

    Google Scholar 

  • Genschick, P., Criqui, M.C., Parmentier, Y., Derevier, A., and Fleck, J. 1998. Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10: 2063–2075.

    Google Scholar 

  • Glotzer, M., Murray, A.W. and Kirschner, M.W. 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Grafi, G., Burnett, R.J., Helentjaris, T., Larkins, A.B., DeCaprio, J.A., Sellers, W.R. and Kaelin, W.G. Jr. 1996. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl. Acad. Sci. USA 93: 8962–8967.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, C. 1998. The retinoblastoma pathway in plant cell cycle and development. Curr. Opin. Plant. Biol. 1: 492–497.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J.W. and Elledge, S.J. 1996. Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev. 6: 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell, L.H. and Weinert, T.A. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Hata, S. 1991. cDNA cloning of a novel cdc2+/cdc28-related protein kinase from rice. FEBS Lett. 279: 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Howard, A. and Pelc, S.R. 1953. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 6(Suppl.): 261–273.

    CAS  Google Scholar 

  • Huntley, R., Healy, S., Freeman, D., Lavender, P., de Jager, S., Greenwood, J., Makker, J., Walker, E., Jackmann, M., Xie, Q., Bannister, A., Kouzarides, T., Gutierrez, C., Doonan, J.H. and Murray, J.A.H. 1998. The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Mol. Biol. 37: 155–169.

    Article  PubMed  CAS  Google Scholar 

  • Inzé, D., Guterriez, C. and Chua, N.-H. 1999. Trends in plant cell cycle research. Plant Cell 11: 991–994.

    PubMed  Google Scholar 

  • Jacobs, T.W. 1995. Cell cycle control. Annu. Rev. Plant Physiol. Plant Mol Biol. 46: 317–339.

    CAS  Google Scholar 

  • Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J. and Pavletich, N.P. 1995. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature 376:313–320.

    Article  PubMed  CAS  Google Scholar 

  • John, P.C.L., Zhang, K., Dong, C., Diederich, L. and Wightman, F. 1993. p34cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin. Aust. J. Plant Physiol. 20: 503–526.

    Article  CAS  Google Scholar 

  • Johnson, D.G. and Walker, C.L. 1999. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39: 295–312.

    Article  PubMed  CAS  Google Scholar 

  • Jyung, J.-C. and Sheen, J. 1997. Sugar sensing in higher plants. Trends Plant Sci. 2: 208–214.

    Article  Google Scholar 

  • Kato, J., Matsushime, H., Hiebert, S.W., Ewen, M.E. and Sherr, C.J. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7: 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Kato, J.-Y. and Sherr, C.J. 1993. Inhibition of granulocyte differentiation by G1 cyclins D2 and D3, but not Dl. Proc. Natl. Acad. Sci. USA 90: 11513–11517.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, M., Higashi, H., Jung, H.K., Susuki-Takahashi, I., Ikeda, M., Tamai, K., Kato, J.Y., Segawa, K., Yoshida, E., Nishimura, S. and Taya, Y. 1996. The consensus motif for phosphorylation by cyclin D1-CDK4 is different from that for phosphorylation by cyclin A/E-CDK2. EMBO J. 15: 7060–7096.

    PubMed  CAS  Google Scholar 

  • Koch, K.E. 1996. Carbohydrate modulated gene expression in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 47: 509–540.

    Article  PubMed  CAS  Google Scholar 

  • Laufs, P., Grandjean, O., Jonak, C., Kieu, K. and Traas, J. 1998. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10: 1375–1389.

    PubMed  CAS  Google Scholar 

  • Lees, E.M. and Harlow, E. 1993. Sequences within the conserved cyclin box of human cyclin A are sufficient for binding to and activation of CDC2 kinase. Mol. Cell. Biol. 13: 1194–1201.

    PubMed  CAS  Google Scholar 

  • Lees, E. 1995. Cyclin dependent kinase regulation. Curr. Opin. Cell Biol. 7: 773–780.

    Article  PubMed  CAS  Google Scholar 

  • Lenhard, M. and Laux, T. 1999. Shoot meristem formation and maintenance. Curr. Opin. Plant. Biol. 2: 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Loeffler, M. and Potten, CS. 1996. Stem cells and cellular pedigrees. In: C.S. Potten (Ed.) Stem Cells, Academic Press, London, pp. 1–27.

    Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, J.W., Glendening, C.L., Livingston, D.M. and De-Caprio, J.A. 1993. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol. Cell. Biol. 13: 367–372.

    PubMed  CAS  Google Scholar 

  • Lyndon, R.F. 1994. Control of organogenesis at the shoot apex. New Phytol. 128: 1–18.

    Article  Google Scholar 

  • Lyndon, R.F. 1998. The Shoot Apical Meristem, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mateyak, M.K., Obaya, A.J. and Sedivy, J.M. 1999. c-Myc regulates cyclin D-CDK4 and-CDK6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19: 4672–4683.

    PubMed  CAS  Google Scholar 

  • Matsushime, H., Roussel, M.F., Ashmun, R.A. and Sherr, C.J. 1991. Colony-stimulated factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65: 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Miao, G.-H., Hong, Z. and Verma, D.P.S. 1993. Two functional soybean genes encoding p34cdc2 protein kinases are regulated by different developmental pathways. Proc. Natl. Acad. Sci. USA 90: 943–947.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, V., De Veylder, L., Van Montague, M. and Inzé, D. 1999. Cyclin-dependent kinases and cell division in plants: the nexus. Plant Cell 11:509–521.

    PubMed  CAS  Google Scholar 

  • Mittnacht, S. 1998. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13: 261–291.

    Article  PubMed  CAS  Google Scholar 

  • Motokura, T., Bloom, T., Kim, H.G., Juppner, H., Ruderman, J.V., Kronenberg, H.M. and Arnold, A. 1991. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350: 512–515.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Murray, J.A.H. 1994. The beginning of START. Plant Mol. Biol. 26: 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J.A.H., Freeman, D., Greenwood, J., Huntley, R., Makkerh, J., Riou-Khamlichi, C., Sorrell, D.A., Cockcroft, C., Carmichael, J.P., Soni, R. and Shah, Z.H. 1998. Plant D cyclins and retinoblastoma (Rb) plant homologues. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 99–128.

    Google Scholar 

  • Nagata, T., Nemoto, Y. and Hasewaza, S. 1992. Tobacco BY-2 cell line as the ‘HeLa’ cell in the cell biology of higher plants. Int. Rev. Cytol. 132: 1–30.

    Article  CAS  Google Scholar 

  • Nakagami, H., Sekine, M., Muraki, H. and Shinmyo, A. 1999. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vim?. Plant J. 18:243–252.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. 1996. At the heart of the budding yeast cell cycle. Trends Genet. 12:405–411.

    Article  PubMed  CAS  Google Scholar 

  • Nigg, E.A. 1993. Targets of cyclin-dependent protein kinases. Curr. Opin. Cell Biol. 5: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Norbury, C. and Nurse, P. 1992. Animal cell cycles and their control. Annu. Rev. Biochem. 61: 441–470.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A.B. 1989. G1 events and regulation of cell proliferation. Science 246: 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Pavletich, N.P. 1999. Mechanisms of cyclin-dependent kinase regulation: structures of CDKs, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287: 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Pennell, R.I. and Lamb, C 1997. Programmed cell death in plants. Plant Cell 9: 1157–1168.

    Article  PubMed  CAS  Google Scholar 

  • Pines, J. 1995a. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308: 697–711.

    PubMed  CAS  Google Scholar 

  • Pines, J. 1995b. Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res. 66: 181–212.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M. and Rogers, S.W. 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci 21: 267–271.

    PubMed  CAS  Google Scholar 

  • Renaudin, J.-P., Doonan, J.H., Freeman, D., Hashimoto, J., Hirt, H., Inzé, D., Jacobs, T., Kouchi, H., Rouze, P., Sauter, M., Savoure, A., Sorrell, D.A., Sundaresan, V. and Murray, J.A.H. 1996. Plant cyclins: a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organisation. Plant Mol. Biol. 32: 1003–1018.

    Article  PubMed  CAS  Google Scholar 

  • Renaudin, J.P., Savoure, A., Philippe, H., Van Montague, M., Inzé, D. and Rouze, P. 1998. Characterisation and classification of plant cyclin sequences related to A-and B-type cyclins. In: D. Francis, D. Dudits, and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 67–98.

    Google Scholar 

  • Renz, A., Fountain, M.D. and Beck, E. 1997. Nucleotide sequence of a cDNA encoding a D-type cyclin (accession no. Y10162) from a photoautotrophic cell suspension culture of Chenopodium rubrum (L.). Plant Physiol. 113: 1004.

    Google Scholar 

  • Riou-Khamlichi, C., Huntley, R., Jacqmard, A. and Murray, J.A.H. 1999. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541–1544.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S.W., Wells, R. and Rechsteiner, M. 1996. Amino acid sequences common to rapidly degrading proteins: the PEST hypothesis. Science 234: 364–368.

    Article  Google Scholar 

  • Sekine, M., Ito, M., Uemukai, K., Maeda, Y., Nakagami, H. and Shinmyo, A. 1999. Isolation and characterization of the E2F-like gene in plants. FEBS Lett. 460: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Sewing, A., Burger, C., Brusselbach, S., Schalk, C., Lubicello, F.C. and Muller, R. 1993. Human cyclin D1 encodes a labile nuclear protein whose synthesis is directly induced by growth factors and suppressed by cyclic AMP. J. Cell Sci. 104: 545–555.

    PubMed  CAS  Google Scholar 

  • Sherr, C.J. 1993. Mammalian G1 cyclins. Cell 73: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C.J. 1994. G1 phase progression: cycling on cue. Cell 79: 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C.J. 1996. Cancer cell cycles. Science 274: 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, S. and Mori, H. 1998. Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol. 39: 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Sicinki, P., Donaher, J.D., Parker, S.B., Li, T., Fazelli, A., Gardner, H., Haslam, S.Z., Bronson, R.T., Elledge, S.J. and Weinberg, R.A. 1995. Cyclin Dl provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630.

    Article  Google Scholar 

  • Simanis, V. and Nurse, P. 1986. The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H. and Murray, J.A.H. 1995. A family of cyclin D homologues from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7: 85–103.

    PubMed  CAS  Google Scholar 

  • Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C and Murray, J.A.H. 1999. Distinct cyclin D genes show mitotic ac-cumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol. 119: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Taya, Y. 1997. Rb kinases and Rb-binding proteins: new points of view. Trends Biochem. Sci. 14–17.

    Google Scholar 

  • Traas, J., Hulskamp, M., Gendreau, E. and Hofte, H. 1998. En-doreduplication and development: rule without dividing? Curr. Opin. Plant Biol. 1:498–503.

    Article  PubMed  CAS  Google Scholar 

  • Umeda, M., Bhalerao, R.P., Schell, J., Uchimiya, H. and Koncz, C. 1998. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95: 5021–5026.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Fowke, L.C. and Crosby, W.L. 1997. A plant cyclin-dependent kinase inhibitor gene. Nature 386: 451–452.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Qi, Q., Schorr, P., Cutler, A.J., Crosby, W.L. and Fowke, L.C. 1998. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15:501–510.

    Article  PubMed  Google Scholar 

  • Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  PubMed  CAS  Google Scholar 

  • White-Cooper, H. and Glover, D.M. 1995. Regulation of the cell cycle during Drosophila development. In: C. Hutchsison and D.M. Glover (Eds.) Cell Cycle Control, IRL Press, Oxford, pp. 264–296.

    Google Scholar 

  • Xie, O., Suarez-Lopez, P. and Gutierrez, C. 1995. Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J. 14: 4073–4082.

    PubMed  CAS  Google Scholar 

  • Xie, O., Sanz-Burgos, A.P., Hannon, G.J. and Gutierrez, C. 1996. Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15: 4900–4908.

    PubMed  CAS  Google Scholar 

  • Xiong, Y., Connolly, T., Futcher, B. and Beach, D. 1991. Human D-type cyclin. Cell 65: 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Zarkowska, T., Harlow, E. and Mittnacht, S. 1997. Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Zwijssen, R.M.L., Klompmaker, R., Wientjens, E.B.H.G.M., Kristel, P.M.P., van der Burg, B. and Michalides, R.J.A.M. 1996. Cyclin D1 triggers autonomous growth of breast cancer cells by governing cell cycle exit. Mol. Cell. Biol. 16: 2554–2560.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. H. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meijer, M., Murray, J.A.H. (2000). The role and regulation of D-type cyclins in the plant cell cycle. In: Inzé, D. (eds) The Plant Cell Cycle. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0936-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0936-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3798-3

  • Online ISBN: 978-94-010-0936-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics