Skip to main content

Programmed cell death during endosperm development

  • Chapter
Book cover Programmed Cell Death in Higher Plants

Abstract

The endosperm of cereals functions as a storage tissue in which the majority of starch and seed storage proteins are synthesized. During its development, cereal endosperm initiates a cell death program that eventually affects the entire tissue with the exception of the outermost cells, which differentiate into the aleurone layer and remain living in the mature seed. To date, the cell death program has been described for maize and wheat endosperm, which exhibits common and unique elements for each species. The progression of endosperm programmed cell death (PCD) in both species is accompanied by an increase in nuclease activity and the internucleosomal degradation of nuclear DNA, hallmarks of apoptosis in animals. Moreover, ethylene and abscisic acid are key to mediating PCD in cereal endosperm. The progression of the cell death program in developing maize endosperm follows a highly organized pattern whereas in wheat endosperm, PCD initiates stochastically. Although the essential characteristics of cereal endosperm PCD are now known, the molecular mechanisms responsible for its execution remain to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, HJ.M. and Tunen, AJ. 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569–1582.

    PubMed  CAS  Google Scholar 

  • Arrends, M.J., Morris, R.G. and Wyllie, A.H. 1990. Apoptosis: the role of the endonuclease. Am. J. Path. 136: 593–608.

    Google Scholar 

  • Azanza, F., Bar-Zur, A. and Juvik, J.A. 1996. Variation in sweet corn kernel characteristics associated with stand establishment and eating quality. Euphytica 87: 7–18.

    Article  Google Scholar 

  • Bailly, C., Corbineau, F. and Come, D. 1992. The effect of abscisic acid and methyl jasmonate on 1-aminocyclopropane 1-carboxylic acid conversion to ethylene in hypocotyl segments of sunflower seedlings, and their control by calcium and calmodulin. Plant Growth Reg. 11: 349–355.

    Article  CAS  Google Scholar 

  • Barry, M.A. and Eastman, A. 1992. Endonuclease activation during apoptosis: the role of cytosolic Ca2+ and pH. Biochem. Biophys. Res. Com. 186: 782–789.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, D., Singh, M. and Salamini, F. 1988. Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485–492.

    Article  CAS  Google Scholar 

  • Beers, E.P., Woffenden, B.J. and Zhao, C. 2000. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol., this issue.

    Google Scholar 

  • Bethke, P.C., Lonsdale, J.E., Fath, A. and Jones, R.L. 1999. Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11: 1033–1045.

    PubMed  CAS  Google Scholar 

  • Bewley, J.D. and Black, M. 1978. Physiology and Biochemistry of Seeds, Springer-Verlag, Berlin.

    Google Scholar 

  • Bewley, J.D. and Black, M. 1994. Seeds: Physiology of Development and Germination, Plenum Press, New York.

    Google Scholar 

  • Bhatnagar, S.P. and Sawhney, V. 1981. Endosperm: its morphology, ultrastructure, and histochemistry. Int. Rev. Cytol. 73: 55–102.

    Article  Google Scholar 

  • Boesewinkel, F.D. and Bouman, F. 1995. Seed morphology and development. In: J. Kigel and G. Galili (Eds.), Seed Development and Germination, Marcel Dekker, New York, pp. 1–24.

    Google Scholar 

  • Bosnes, M., Harris, E., Aigeltinger, L. and Olsen, O.-A. 1987. Morphology and ultrastructure of 11 barley shrunken endosperm mutants. Theor. Appl. Genet. 74: 177–187.

    Article  Google Scholar 

  • Bosnes, M., Weideman, F. and Olsen, O.-A. 1992. Endosperm differentiation in barley wild-type and sex-mutants. Plant J. 2: 661–674.

    Article  Google Scholar 

  • Boyer, C.D. and Shannon, J.C. 1983. The use of endosperm genes for sweet corn quality improvement. Plant Breed. Rev. 1: 139–161.

    Article  CAS  Google Scholar 

  • Bradbury, D., MacMasters, M.M. and Cull, I.M. 1956. Structure of the mature wheat kernel. III. Microscopic structure of the endosperm of hard red winter wheat. Cereal Chem. 33: 361–373.

    Google Scholar 

  • Brink, R.A. and Cooper, D.C. 1947. The endosperm in seed development. Bot. Rev. 13: 423–541.

    Article  Google Scholar 

  • Brown, D.G., Sun, X.M. and Cohen, G.M. 1993. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J. Biol. Chem. 268: 3037–3039.

    PubMed  CAS  Google Scholar 

  • Cagampang, G.B. and Dalby, A. 1972. Development of ribonuclease activity in nine inbred lines of normal and opaque2 maize. Can. J. Plant Sci. 52: 901–905.

    Article  CAS  Google Scholar 

  • Campbell, R. and Drew, M.C. 1983. Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. Planta 157: 350–357.

    Article  Google Scholar 

  • Cannon, R.E. and Scandalios, J.G. 1989. Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize. Mol. Gen. Genet. 219: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Chandra, S., Martin, G.B. and Low, P.S. 1996. The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc. Natl. Acad. Sci. USA 93: 13393–13397.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M.T. and Neuffer, M.G. 1994. Endosperm-embryo interactions in maize. Maydica 39: 9–18.

    Google Scholar 

  • Chasan, R. 1994. Tracing tracheary element development. Plant Cell 6: 917–919.

    CAS  Google Scholar 

  • Chen, T.C and Kao, C.H. 1992. Senescence of rice leaves XXXII. Effects of abscisic acid and benzyladenine on polyamines and ethylene production during senescence. J. Plant Physiol. 139: 617–620.

    Article  CAS  Google Scholar 

  • Cheng, C.-Y and Lur, H.-S. 1996. Ethylene may be involved in abortion of the maize caryopsis. Physiol. Plant. 98: 245–252.

    Article  CAS  Google Scholar 

  • Chourey, P.S., Cheng, W.-H., Taliercio, E.W. and Im, K.H. 1995. Genetic aspects of sucrose-metabolizing enzymes in developing maize seed. In: M.A. Madore and W.J. Lucas (Eds.), Carbon Partitioning and Source-Sink Interactions in Plants, American Society of Plant Physiologists, Rockville, MD, pp. 239–245.

    Google Scholar 

  • Clark, J.K. and Sheridan, W.F. 1986. Developmental profiles of the maize embryo-lethal mutants dek-22 and dek-23. J. Hered. 77: 83–92.

    Google Scholar 

  • Clemens, M.J., Bushell, M. and Morley, S.J. 1998. Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene 17: 2921–2931.

    Article  PubMed  CAS  Google Scholar 

  • Collins, R.J., Harmon, B.V., Gobe, G.C. and Kerr, J.F.R. 1992. Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int. J. Radiat. Biol. 61: 451–453.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, L. Franken, J. van der Krol, A., Wittich, P., Dons, H.J.M. and Angenent, G.C. 1997. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703–715.

    PubMed  CAS  Google Scholar 

  • Comai, L. and Harada, J.J. 1990. Transcriptional activities in dry seed nuclei indicate the timing of the transition from embryogeny to germination. Proc. Natl. Acad. Sci. USA 87: 2671–2674.

    Article  PubMed  CAS  Google Scholar 

  • Creech, R.G. 1965. Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52: 1175–1186.

    PubMed  CAS  Google Scholar 

  • Cruz, L.J., Cagampang, G.B. and Juliano, B.O. 1970. Biochemical factors affecting protein accumulation in the rice grain. Plant Physiol. 46: 743–747.

    Article  PubMed  CAS  Google Scholar 

  • Dalby, A. and Cagampang, G.B. 1970. Ribonuclease activity in normal, opaque2 and floury2 maize endosperm during development. Plant Physiol. 46: 142–144.

    Article  PubMed  CAS  Google Scholar 

  • Dalby, A. and Davies, I. 1967. Ribonuclease activity in the developing seed of normal and opaque-2 maize. Science 155: 1573.

    Article  PubMed  CAS  Google Scholar 

  • Dalby, A. and Tsai, C.Y. 1975. Comparison of lysine and zein and non-zein protein contents in immature and mature maize endosperm mutants. Crop Sci. 15: 513–520.

    Article  CAS  Google Scholar 

  • D’Amato, F. 1984. Role of polyploidy in reproductive organs and tissues. In: B.M. Johri (Ed.), Embryology of Angiosperms, Springer-Verlag, Berlin, pp. 519–566.

    Chapter  Google Scholar 

  • DeMason, D.A. 1994. Controls of germination in noncereal monocotyledons. Adv. Struct. Biol. 3: 285–310.

    Google Scholar 

  • DeMason, D.A. 1997. Endosperm structure and development. In: B.A. Larkins and I.K. Vasil (Eds.), Cellular and Molecular Biology of Plant Seed Development, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 73–115.

    Google Scholar 

  • Doehlert, D.C. and Kuo, T.M. 1994. Gene expression in developing kernels of some endosperm mutants of maize. Plant Cell Physiol. 35: 411–418.

    CAS  Google Scholar 

  • Doehlert, D.C., Kuo, T.M. and Felker, F.C. 1988. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol. 86: 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Doehlert, D.C., Smith, L.J. and Duke, E.R. 1994. Gene expression during maize kernel development. Seed Sci. Res. 4: 299–305.

    Article  CAS  Google Scholar 

  • Donovan, G.R., Lee, J.W. and Hill, R.D. 1977. Compositional changes in the developing grain of high-and low-protein wheats. Cereal Chem. 52: 638–645.

    Google Scholar 

  • Douglass, S.K., Juvik, J.A. and Splittstoesser, W.E. 1993. Sweet corn seedling emergence and variation in kernel carbohydrate reserves. Seed Sci. Technol. 21: 433–445.

    Google Scholar 

  • Drew, M.C., Jackson, M.B. and Giffard, S. 1979. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive response to flooding in Zea mays L. Planta 147: 83–88.

    Article  CAS  Google Scholar 

  • Duncan, R. and Hershey, J.W.B. 1984. Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. J. Biol. Chem. 259: 11882–11889.

    PubMed  CAS  Google Scholar 

  • Duncan, R. and Hershey, J.W.B. 1985. Regulation of initiation factors during translational repression caused by serum depletion: covalent modification. J. Biol. Chem. 260: 5493–5497.

    PubMed  CAS  Google Scholar 

  • Dusenbury, C.E., Davis, M.A., Lawrence, T.S. and Maybaum, J. 1991. Induction of megabase DNA fragments by 5-fluorodeoxyuridine in human colorectal tumor (HT29) cells. Mol. Pharmacol. 39: 285–289.

    PubMed  CAS  Google Scholar 

  • Duvik, D.N. 1961. Protein granules of maize endosperm cells. Cereal Chem. 38: 374–385.

    Google Scholar 

  • Farkas, G.L. 1982. Ribonucleases and ribonucleic acid breakdown. In: B. Parthier and D. Boulter (Eds.), Encyclopedia of Plant Physiology, Springer-Verlag, Berlin, pp. 224–262.

    Google Scholar 

  • Felker, F.C., Peterson, D.M. and Nelson, O.N. 1985. Anatomy of immature grains of eight maternal effect shrunken endosperm barley mutants. Am. J. Bot. 72: 248–256.

    Article  Google Scholar 

  • Filipski, J., Leblanc, J., Youdale, T., Sikorska, M. and Walker, P.R. 1990. Periodicity of DNA folding in higher order chromatin. EMBOJ. 9: 1319–1327.

    CAS  Google Scholar 

  • Friedman, W.E. 1990. Double fertilization in Ephedra, a non-flowering plant: its bearing on the origin of angiosperms. Science 247: 951–954.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, W.E. 1992. Double fertilization in nonflowering seed plants and its relevance to the origin of flowering plants. Int. Rev. Cytol. 140: 319–355.

    Article  Google Scholar 

  • Fuchs, Y. and Lieberman, M. 1968. Effects of kinetin, IAA, and gibberellin on ethylene production, and their interactions in growth of seedlings. Plant Physiol. 42: 2029–2036.

    Article  Google Scholar 

  • Fukuda, H. and Komamin, A. 1983. Changes in the synthesis of RNA and protein during tracheary element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Plant Cell Physiol. 24: 603–614.

    CAS  Google Scholar 

  • Gallie, D.R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5: 2108–2116.

    Article  PubMed  CAS  Google Scholar 

  • Gallie, D.R., Caldwell, C. and Pitto, L. 1995. Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol. 108: 1703–1713.

    PubMed  CAS  Google Scholar 

  • Gallie, D.R., Le, H., Caldwell, C., Tanguay, R.L., Hoang, N.X. and Browning, K.S. 1997. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272: 1046–1053.

    Article  PubMed  CAS  Google Scholar 

  • Gallie, D.R., Le, H., Tanguay, R.L. and Browning, K.S. 1998. Translation initiation factors are differentially regulated in cereals during development and following heat shock. Plant J. 14: 715–722.

    Article  CAS  Google Scholar 

  • Giroux, M.J., Boyer, C., Feix, G. and Hannah, CL. 1994. Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol. 106: 713–722.

    PubMed  CAS  Google Scholar 

  • Glover, D.V., Crane, PL., Misra, P.S. and Mertz, E.T. 1975. Genetics of endosperm mutants in maize as related to protein quality and quantity. In: High-Quality Protein Maize, Dowden, Hutchison and Ross, Stroudsburg, PA, p. 228.

    Google Scholar 

  • Green, P.J. 1994. The ribonucleases of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 421–145.

    Article  CAS  Google Scholar 

  • Green, R. and Fluhr, R. 1995. UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7: 203–212.

    PubMed  CAS  Google Scholar 

  • Guan, L. and Scandalios, J.G. 1998. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol. 117: 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R. and Vasil, I.K. 1992. The viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 6: 609–618.

    Article  PubMed  CAS  Google Scholar 

  • He, C.-J., Morgan, P.W. and Drew, M.C. 1992. Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol. 98: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • He, C.-J., Morgan, P.W. and Drew, M.C. 1996. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 112: 463 172.

    PubMed  CAS  Google Scholar 

  • Hua, J. and Meyerowitz, E.M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., Sakai, S., Nourizadeh, S., Chen, Q.C., Bleeker, A.B., Ecker, J.R. and Meyerowitz, E.M. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis thaliana. Plant Cell 10: 1321–1332.

    PubMed  CAS  Google Scholar 

  • Ingham, P.W. 1998. Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective. Int. J. Dev. Biol. 42: 423–429.

    PubMed  CAS  Google Scholar 

  • Ingle, J., Beitz, D. and Hageman, R.H. 1965. Changes in composition during development and maturation of maize seeds. Plant Physiol. 40: 835–839.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57: 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T., Dietrich, R.A. and Dangl, J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M.D. 1996. Reactive oxygen species and programmed cell death. Trends Biochem 21: 83–86.

    CAS  Google Scholar 

  • Jacobson, M.D. and Raff, M.C. 1995. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374: 814–816.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen, K., Klemsdal, S., Aalen, R., Bosnes, M., Alexander, D. and Olsen, O.-A. 1989. Barley aleurone cell development: molecular cloning of aleurone-specific cDNAs from immature grains. Plant Mol. Biol. 12: 285–293.

    Article  CAS  Google Scholar 

  • Johari, R.P., Mehta, S.L. and Naik, M.S. 1977. Protein synthesis and changes in nucleic acids during grain development of sorghum. Phytochemistry 16: 19–24.

    Article  CAS  Google Scholar 

  • Jones, R.J. and Brenner, M.L. 1987. Distribution of abscisic acid in maize kernels during grain filling. Plant Physiol. 83: 905–909.

    Article  PubMed  CAS  Google Scholar 

  • Kermode, A.R. and Bewley, J.D. 1985. The role of maturation drying in the transition from seed development to germination. I. Acquisition of desiccation-tolerance and germinability during development of Ricinus communis L. seeds. J. Exp. Bot. 36: 1906–1915.

    Article  Google Scholar 

  • Kerr, J.F.R., Gobe, G.C., Winterford, C.M. and Harmon, B.V. 1995. Anatomical methods in cell death. In: L.M. Schwartz and B.A. Osborne (Eds.), Cell Death Methods in Cell Biology, Academic Press, San Diego, pp. 1–27.

    Google Scholar 

  • Koukalova, B., Kovarik, A., Fajkus, J. and Siroky, J. 1997. Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett. 414: 289–292.

    Article  PubMed  CAS  Google Scholar 

  • Kowles, R.V and Phillips, R.L. 1985. DNA amplification patterns in maize endosperm nuclei during kernel development. Proc. Natl. Acad. Sci. USA 82: 7010–7014.

    Article  PubMed  CAS  Google Scholar 

  • Kowles, R.V. and Phillips, R.L. 1988. Endosperm development in maize. Int. Rev. Cytol. 112: 97–136.

    Article  Google Scholar 

  • Kowles, R.V., McMullen, M.D. and Phillips, R.L. 1986. Gene expression in developing maize kernels. In: J.C. Shannon, D.P. Knievel and C.D. Boyer (Eds), Regulation of Carbon and Nitrogen Reduction and Utilization in Maize, American Society of Plant Physiologists, Rockville, MD, pp. 189–206.

    Google Scholar 

  • Kyle, D.J. and Styles, E.D. 1977. Development of aleurone and subaleurone layers in maize. Planta 137: 185–193.

    Article  Google Scholar 

  • Larkins, B.A. and Hurkman, W.J. 1978. Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol. 62: 256–263.

    Article  PubMed  CAS  Google Scholar 

  • Lau, O.L. and Yang, S.E 1973. Mechanism of a synergistic effect of kinetin on auxin-induced ethylene production: suppression of auxin conjugation. Plant Physiol. 51: 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Le, H., Browning, K.S. and Gallie, D.R. 1998. The phosphorylation state of the wheat translation initiation factors eIF4B, eIF4A, and eIF2 is differentially regulated during seed development and germination. J. Biol. Chem. 273: 20084–20089.

    Article  PubMed  CAS  Google Scholar 

  • Le, H., Tanguay, R.L., Balasta, M.L., Wei, C.-C., Browning, K.S., Metz, A.M., Goss, D.J. and Gallie, D.R. 1997. The translation initiation factors eIFiso4G and eIF-4B interact with the poly(A)-binding protein to increase its RNA binding affinity. J. Biol. Chem. 272: 16247–16255.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. and Tsai, C.Y. 1984. Zein synthesis in the embryo and endosperm of maize mutants. Biochem. Genet. 22: 729–737.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B., Martin, P. and Bangerth, F. 1989. The effect of sucrose on the levels of abscisic acid, indoleacetic acid and zeatin / zeatinriboside in wheat ears growing in liquid culture. Physiol. Plant. 77: 73–80.

    Article  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R. and Lamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6: 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Levy-Strumpf, N., Deiss, L.P., Berissi, H. and Kimchi, A. 1997. DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol. Cell. Biol. 17: 1615–1625.

    PubMed  CAS  Google Scholar 

  • Lopes, M.A. and Larkins, B.A. 1993. Endosperm origin, development, and function. Plant Cell 5: 1383–1399.

    PubMed  CAS  Google Scholar 

  • Lowe, J. and Nelson, O.E. 1947. Minature seed: a study in the development of a defective caryopsis in maize. Genetics 31: 525–533.

    Google Scholar 

  • Lukaszewski, T.A. and Reid, M.S. 1989. Bulb type flower senescence. Acta. Hort. 261: 59–62.

    Google Scholar 

  • Luo, M., Bilodeau, P., Koltunow, A., Dennis, E.S. and Peacock, W.J. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96: 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Lur, H.-S. and Setter, T.L. 1993. Role of auxin in maize endosperm development. Plant Physiol. 103: 273–280.

    PubMed  CAS  Google Scholar 

  • Mangelsdorf, P.C. 1926. The genetics and morphology of some endosperm characters in maize. Conn. Exp. Stn. Bull. 279: 513–614.

    Google Scholar 

  • Manzocchi, L.A., Daminati, M.G. and Gentinetta, E. 1980. Viable endosperm mutants in maize. II. Kernel weight, nitrogen and zein accumulation during endosperm development. Maydica 25: 199–210.

    Google Scholar 

  • Marshall, S.W. 1987. Sweet Corn. In: S.A. Watson and P.E. Ramstad (Eds.), Corn: Chemistry and Technology, American Association of Cereal Chemists, St. Paul, MN, pp. 431–445.

    Google Scholar 

  • Martin, A.C. 1946. The comparative internal morphology of seeds. Am. Midl. Naturalist 36: 513–660.

    Article  Google Scholar 

  • McCarty, D.R., Carson, C.B., Stinard, P.S. and Robertson, D.S. 1989. Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1: 523–532.

    PubMed  CAS  Google Scholar 

  • McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M. and Vasil, I.K. 1991. The viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905.

    Article  PubMed  CAS  Google Scholar 

  • Mengel, K., Friedrich, B. and Judel, G.K. 1985. Effect of light intensity on the concentrations of phytohormones in developing wheat grains. J. Plant. Physiol. 120: 255–266.

    Article  CAS  Google Scholar 

  • Methot, N., Song, M.S. and Sonenberg, N. 1996. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell. Biol. 16: 5328–5334.

    PubMed  CAS  Google Scholar 

  • Miller, M.E. and Chourey, P.S. 1992. The maize invertase-deficient minature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4: 297–305.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Shulaev, V. and Lam, E. 1995. Coordinate activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7: 29–42.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Simon, L. and Lam, E. 1997. Pathogen-induced programmed cell death in tobacco. J. Cell. Sci. 110: 1333–1344.

    PubMed  CAS  Google Scholar 

  • Morgan, P.W. and Hall, W.C. 1962. Effect of 2,4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum. Plant Physiol. 15: 420–427.

    Article  CAS  Google Scholar 

  • Morrison, W.R. and Milligan, T.P. 1982. Lipids in maize starches. In: G. Inglett (Ed.), Maize: Recent Progress in Chemistry and Technology, Academic Press, New York, pp. 1–18.

    Google Scholar 

  • Neuffer, M.G. and Sheridan, W.G. 1980. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics 95: 929–944.

    PubMed  CAS  Google Scholar 

  • Ohad, N. Margossian, L. Hsu, Y.-C., Williams, C. Repetti, P. and Fischer R.L. 1996. A mutation that allows endosperm development without fertilization. Proc. Natl. Acad. Sci. USA 93: 5319–5324.

    Article  PubMed  CAS  Google Scholar 

  • Ohad, N. Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B. and Fischer, R.L. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11: 407 15.

    PubMed  CAS  Google Scholar 

  • Olsen, O.-A., Potter, R.H. and Kalla, R. 1992. Histo-differentiation and molecular biology of developing cereal endosperm. Seed Sci. Res. 2: 117–131.

    Article  Google Scholar 

  • Ou-Lee, T.M. and Setter, T.L. 1985. Enzyme activities of starch and sucrose pathways and growth of apical and basal kernels. Plant Physiol. 79: 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Overmyer, K., Kangasjarvi, J.S., Kuittinen, T. and Saarma, M. 1998. Gene expression and cell death in ozone-exposed plants: is programmed cell death involved in ozone-sensitive Arabidopsis mutants? In: L.J. de Kok and I. Stulen (Eds.), Responses of Plant Metabolism to Air Pollution, Backhuys Publishers, Leiden, Netherlands, pp. 403 106.

    Google Scholar 

  • Ozbun, J.L., Hawker, J.S., Greenberg, E., Lammel, C., Preiss, J. and Lee, E.YC. 1973. Starch synthase, Phosphorylase, and UDP-Glc pyrophosphorylase in developing maize kernels. Plant Physiol. 51: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Panavas, T., Walker, E.L. and Rubinstein, B. 1998. Possible involvement of abscisic acid in senescence of daylily petals. J. Exp. Bot. 49: 1987–1997.

    CAS  Google Scholar 

  • Pastori, G.M. and del Rio, L.A. 1997. Natural senescence of pea leaves. An active oxygen-mediated function for peroxisomes. Plant Physiol. 113: 411 118.

    CAS  Google Scholar 

  • Payton, S., Fray, R.G., Brown, S. and Grierson, D. 1996. Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol. Biol. 31: 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, R.L., Wang, A.S. and Kowles, R.V. 1983. Molecular and developmental cytogenetics of gene multiplicity in maize. Stadler Symp. 15: 105–118.

    CAS  Google Scholar 

  • Phillips, R.L., Kowles, R.V., McMullen, M., Enomoto, S. and Rubenstein, I. 1985. Developmentally timed changes in maize endosperm DNA. In: M. Freeling (Ed.), Plant Genetics, Alan R. Liss, New York, pp. 739–754.

    Google Scholar 

  • Pirrotta, V. 1998. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93: 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Pitto, L., Gallie, D.R. and Walbot, V. 1992. Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts. Plant Physiol. 100: 1827–1833.

    Article  PubMed  CAS  Google Scholar 

  • Polunovsky, VA., Rosenwald, LB., Tan, A.T., White, J., Chiang, L., Sonenberg, N. and Bitterman, P.B. 1996. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol. Cell. Biol. 16: 6573–6581.

    PubMed  CAS  Google Scholar 

  • Porat, R., Halevy, A.H., Serek, M. and Borochov, A. 1995. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiol. Plant. 93: 778–784.

    Article  CAS  Google Scholar 

  • Prasad, T.K., Anderson, M.D., Martin, B.A. and Stewart, CR. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74.

    PubMed  CAS  Google Scholar 

  • Rademacher, W. and Graebe, J.E. 1984. Hormonal changes in developing kernels of two spring wheat varieties differing in storage capacity. Ber. Dtsch. Bot. Ges. 97: 167–181.

    CAS  Google Scholar 

  • Ramage, R.T. and Crandall, C.L. 1981a. A proposed gene symbol for defective endosperm mutants that express xenia. Barley Genet. Newsl. 11: 30–31.

    Google Scholar 

  • Ramage, R.T. and Crandall, CL. 1981b. Defective endosperm xenia (dex) mutants. Barley Genet. Newsl. 11: 32–33.

    Google Scholar 

  • Ray, B.K., Lawson, T.G., Kramer, J.C., Cladaras, M.H., Grifco, J.A., Abramson, R.D., Merrick, W.C and Thach, R.E. 1985. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260: 7651–7658.

    PubMed  CAS  Google Scholar 

  • Ray, S., Golden, T. and Ray, A. 1996. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol. 180: 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom, P.A., Tebbey, P.W., Van Cleave, S. and Buttke, T.M. 1994. Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency. J. Biol. Chem. 269: 798–801.

    PubMed  CAS  Google Scholar 

  • Sheridan, W.F. and Neuffer, M.G. 1980. Defective kernel mutants of maize. II. Morphology and embryo culture studies. Genetics 95: 945–960.

    PubMed  CAS  Google Scholar 

  • Srivastava, S.R., Kumar, K.U. and Kaufman, R.J. 1998. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J. Biol. Chem. 273: 2416–2423.

    Article  PubMed  CAS  Google Scholar 

  • Stacy, R.A.P., Munthe, E., Steinum, T., Sharma, B. and Aalen, R.B. 1996. A peroxiredoxin antioxidant is encoded by dormancy-related gene, Perl, expressed during late development in the aleurone and embryo of barley grains. Plant Mol. Biol. 31: 1205–1216.

    Article  PubMed  CAS  Google Scholar 

  • Streb, P. and Feierabend, J. 1996. Oxidative stress responses accompanying photoinactivation of catalase in NaCl-treated rye leaves. Bot. Acta. 109: 125–132.

    CAS  Google Scholar 

  • Sugiyama, M. Ito, J., Aoyagi, S. and Fukuda, H. 2000. Endonuclease. Plant Mol. Biol, this issue.

    Google Scholar 

  • Tarun, S.Z. and Sachs, A.B. 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15: 7168–7177.

    PubMed  CAS  Google Scholar 

  • Thelen, M.P. and Northcote, D.H. 1989. Identification and purification of a nuclease from Zinnia elegans L.: a potential marker for xylogenesis. Planta 179: 181–195.

    Article  CAS  Google Scholar 

  • Tomei, L.D. and Cope, F.O. 1991. Apoptosis: The Molecular Basis of Cell Death, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Tomei, L.D. and Cope, F.O. 1994. Apoptosis II: The Molecular Basis of Apoptosis in Disease, Current Communications in Cell and Molecular Biology, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Torti, G., Lombardi, L. and Manzocchi, L.A. 1984. Indole-3-acetic acid content in viable defective endosperm mutants of maize. Maydica 29: 335–343.

    CAS  Google Scholar 

  • Torti, G., Manzocchi, L.A. and Salamini, F. 1986. Free and bound indole-acetic acid is low in the endosperm of the maize mutant defective endosperm-B18. Theor. Appl. Genet. 72: 602–605.

    Article  CAS  Google Scholar 

  • Traas, J., Hulskamp, M., Gendreau, E. and Hofte, H. 1998. Endoreduplication and development: rule without dividing? Curr. Opin. Plant Biol. 1: 498–503.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.Y., Salamini, F. and Nelson, O.E. 1970. Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 46: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.Y., Larkins, B.A. and Glover, D.V 1978. Interaction of the opaque2 gene with starch-forming mutant genes of the synthesis of zein in maize endosperm. Biochem. Genet. 16: 883–896.

    Article  PubMed  CAS  Google Scholar 

  • van Doom, W.G. and Stead, A.D. 1994. The physiology of petal senescence which is not initiated by ethylene. In: R.J. Scott and A.D. Stead (Eds.), Molecular and Cellular Aspects of Plant Reproduction, Cambridge University Press, Cambridge, UK, pp. 239–254.

    Google Scholar 

  • Vijayaraghavan, M.R. and Prabhakar, K. 1984. The endosperm. In: B.M. Johri (Ed.), Embryology of Angiosperms, Springer-Verlag, Berlin, pp. 319–376.

    Chapter  Google Scholar 

  • Wadsworth, G.J. and Scandalios, J.G. 1989. Differential expression of the maize catalase genes during kernel development: the role of steady-state mRNA levels. Dev. Genet. 10: 304–310.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.R. and Sikorska, M. 1994. Endonuclease activities, chromatin structure, and DNA degradation in apoptosis. Biochem. Cell. Biol. 72: 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Walker, PR., Smith, C., Youdale, T., Leblanc, J., Whitfield, J.F. and Sikorska, M. 1991. Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res. 51: 1078–1085.

    PubMed  CAS  Google Scholar 

  • Wang, H., Li, J., Bostock, R.M. and Gilchrist, D.G. 1996a. Apoptosis: a functional paradigm for programmed cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8: 375–391.

    PubMed  CAS  Google Scholar 

  • Wang, H., Wu, H.M. and Cheung, A.Y. 1996b. Pollination induces mRNA poly(A) tail shortening and cell deterioration in flower transmitting tissue. Plant J. 9: 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Oppedijk, B.J., Lu, X., van Duijn, B. and Schilperoort, R.A. 1996c. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol. Biol. 32: 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Hoekstra, S., van Bergen, S., Lamers, G.E.M., Oppedijk, B.J., van der Heijden, M.W., de Priester, W. and Schilperoort, R.A. 1999. Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol. Biol. 39: 489–501.

    Article  PubMed  CAS  Google Scholar 

  • Webster, C., Gaut, R.L., Browning, K.S., Ravel, J.M. and Roberts, J.K.M. 1991. Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips. J. Biol. Chem. 266: 23341–23346.

    PubMed  CAS  Google Scholar 

  • Wilkinson, J.Q., Lanahan, M.B., Yen, H.-C., Giovannoni, J.J. and Klee, H.J. 1995. An ethylene-inducible component of signal transduction encoded by never-ripe. Science 270: 1807–1809.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.M. 1967. Purification of corn ribonuclease. J. Biol. Chem. 242: 2260–2263.

    PubMed  CAS  Google Scholar 

  • Wilson, C.M. 1968. Plant nucleases. I. Separation and purification of two ribonucleases and one nuclease from corn. Plant Physiol. 43: 1332–1338.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.M. 1975. Plant nucleases. Annu. Rev. Plant Physiol. 26: 187–208.

    Article  CAS  Google Scholar 

  • Wilson, C.M. 1980. Plant nucleases. VI. Genetic and developmental variability in ribonuclease activity in inbred and hybrid corn endosperms. Plant Physiol. 66: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.M. 1982. Plant nucleases: biochemistry and development of multiple molecular forms. Isozymes 6: 33–54.

    PubMed  CAS  Google Scholar 

  • Wilson, C.M. and Alexander, D.E. 1967. Ribonuclease activity in normal and opaque2 mutant endosperm of maize. Science 155: 1575.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  • Yeong-Biau, Y. and Yang, S.F. 1979. Auxin-induced ethylene production and its inhibition by aminoethoxy vinylglycine and cobalt ion. Plant Physiol. 64: 1074–1077.

    Article  Google Scholar 

  • Yoshii, H. and Imaseki, H. 1981. Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and abscisic acid on endogenous levels of 1-aminocyclopropane-l-carboxylic acid (ACC) and ACC synthase. Plant Cell Physiol. 22: 369–379.

    CAS  Google Scholar 

  • Young, T.E. 1997. Pleiotropic effects of starch-deficient endosperm mutations on maize kernel and seedling development, Ph.D. dissertation, University of California, Riverside, CA.

    Google Scholar 

  • Young, T.E. and Gallie, D.R. 1999. Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol. Biol. 39: 915–926.

    Article  PubMed  CAS  Google Scholar 

  • Young, T.E. and Gallie, D.R. 2000. Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol. Biol, this issue.

    Google Scholar 

  • Young, T.E., Gallie, D.R. and DeMason, D.A. 1997. Ethylenemediated programmed cell death during maize endosperm development of Su and sh2 genotypes. Plant Physiol. 115: 737–751.

    PubMed  CAS  Google Scholar 

  • Zettl, U.K., Mix, E., Zielasek, J., Stangel, M., Härtung, H.P. and Gold, R. 1997. Apoptosis of myelin-reactive T cells induced by reactive oxygen and nitrogen intermediates in vitro. Cell Immunol. 178: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, L., Jang, J.-C., Jones, T.L. and Sheen, J. 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA 95: 10294–10299.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, T.E., Gallie, D.R. (2000). Programmed cell death during endosperm development. In: Lam, E., Fukuda, H., Greenberg, J. (eds) Programmed Cell Death in Higher Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0934-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0934-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3797-6

  • Online ISBN: 978-94-010-0934-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics