Skip to main content

Developments in High-Rayleigh Number Convection

  • Chapter
  • 250 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 58))

Abstract

A selection of problems in the broad field of buoyancy-driven convective turbulence in the atmosphere and oceans, and in magma chambers, is reviewed, including both vertical and horizontal forcing fluxes. Specific problems include convection at very high Rayleigh numbers in the classical Rayleigh-Bünard configuration, the effects of planetary rotation, thermohaline convection in the oceans, the coupling of convection with solidification or melting, and deep convection in the oceans. Horizontal convection currents at large-scales in the oceans are included as an example of strongly stratified convective flow driven by lateral gradients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boubnov, B. M. and Golitsyn, G.S. (1986) Experimental study of convective structures in rotating fluidsJ. Fluid Mech. 167503–531.

    Article  ADS  Google Scholar 

  • Buffett, B.A., Huppert, H.E., Lister, J.R. and Woods, A.W. (1996) On the thermal evolution of the Earth’s coreJ. Geophys. Res. 1017989–8006.

    Article  ADS  Google Scholar 

  • Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. and Zanetti, G. (1989) Scaling of hard thermal turbulence in Rayleigh-Benard convectionJ. Fluid Mech. 2041–30.

    Article  ADS  Google Scholar 

  • Chavanne, X. (1997) Observation of the Ultimate Regime in Rayleigh-Bünard Convection.Phys. Rev. Letters79(19), 3648–3651.

    Article  ADS  Google Scholar 

  • Condie, S. and Ivey, G.N. (1988) Convectively driven coastal currents in a rotating basinJ. Mar. Res. 46473–494.

    Article  Google Scholar 

  • Davaille, A. and JaupartC.(1993) Transient high Rayleigh number convection with large viscosity variationsJ. Fluid Mech. 253141–166.

    Article  ADS  Google Scholar 

  • Deardorff, J. W. and Willis, G. E. (1967.) Investigation of turbulent thermal convection between horizontal platesJ. Fluid. Mech. 28(4), 675–704.

    Article  ADS  Google Scholar 

  • Fearn, D.R. and Loper, D.E. (1981) Compositional convection and stratification of the Earth’s coreNature 289393–394,.

    Article  ADS  Google Scholar 

  • Fernando, H. J. S., Chen, R.-R. and Boyer, D.L. (1991) Effects of rotation on convective turbulenceJ. Fluid Mech. 228513–547.

    ADS  Google Scholar 

  • Fluery, M. and Lueck, R. G. (1991) Fluxes across a thermohaline staircaseDeep-Sea Res. 38745–747. Fluery, M. and Lueck, R. G. (1992) Microstructure in and around a double-diffusive interfaceJ. Phys. Ocean. 22701–718.

    Article  ADS  Google Scholar 

  • Gargett, A. E. and Holloway, G. (1992) Sensitivity of the GFDL ocean model to different diffusivities of heat and saltJ. Phys. Ocean. 221158–1177.

    Article  ADS  Google Scholar 

  • Gargett, A. E. and Schmitt, R. W. (1982) Observations of salt fingers in the central waters of the eastern North PacificJ. Geophys. Res. 878017–8029.

    Article  ADS  Google Scholar 

  • Goldstein, R. J., Chiang, H. D. and See, D. L. (1990) High-Rayleigh number convection in a horizontal enclosureJ. Fluid Mech. 213111–126.

    Article  ADS  Google Scholar 

  • Griffiths, R.W. (1986) Gravity currents in rotating systemsAnn. Rev. Fluid Mech. 1859–89.

    Article  ADS  Google Scholar 

  • Griffiths, R.W. and Pearce, A.F. (1985a) Instability and eddy pairs on the Leeuwin Current south of AustraliaDeep Sea Res. 321511–1534.

    Article  Google Scholar 

  • Griffiths, R.W.(1987) Effect of Earth’s rotation on convection in magma chambersEarth Planet. Sci. Lett. 85525–536.

    Article  ADS  Google Scholar 

  • Howard, L. N. (1972) Bounds on flow quantitiesAnn. Rev. Fluid Mech. 4473–494.

    Article  ADS  Google Scholar 

  • Howard, L. N. and Krishnamurti, R. (1986) Large scale flow in turbulent convection: a mathematical modelJ. Fluid Mech. 170385–410.

    Article  ADS  MATH  Google Scholar 

  • Howard, L.N. (1990) Limits on the transport of heat and momentum by turbulent convection with large-scale flowStud Appl. Math. 83273–285.

    MATH  Google Scholar 

  • Huppert, H. E. and Turner, J. S. (1980) Ice blocks melting into a salinity gradientJ. Fluid Mech. 100367–384.

    Google Scholar 

  • Ivey, G.N., Taylor, J.R. and Coates, M.J. (1995) Convectively driven mixed layer growth in a rotating stratified fluidDeep Sea Res. 42331–349.

    Article  Google Scholar 

  • Jellinek, M. Kerr, R. and Griffiths, R.W. (1998) Mixing and startification in high-Rayleigh number natural convectionJ. Geophys. Res.submitted.

    Google Scholar 

  • Jones, H. and Marshall, J. (1993) Convection with rotation in a neutral ocean; a study of open-ocean deep convectionJ. Phys. Oceanogr. 231009–1039.

    Article  ADS  Google Scholar 

  • Julien, K., Legg, S., McWilliams, J. and Werne, J. (1995) Penetrative convection in rapidly rotating flows: preliminary results from numerical simulationDyn. Atmos. Oceans 24237–249.

    Article  Google Scholar 

  • Julien, K., Legg, S., McWilliams, J. and Werne, J. (1996) Rapidly rotating turbulent Rayleigh-Bünard convectionJ. Fluid Mech. 322243–273.

    Article  ADS  MATH  Google Scholar 

  • Kerr, R.C. (1994) Melting driven by vigorous compositional convectionJ. Fluid Mech. 280255–285.

    Article  MathSciNet  ADS  Google Scholar 

  • Kerr, R.C., Woods, A.W, Worster, M.G. and Huppert, H.E. (1989) Disequilibrium and macrosegregation during solidification of a binary meltNature 340357–362.

    Article  ADS  Google Scholar 

  • Kraichnan, R. H. (1962) Turbulent thermal convection at arbitrary Prandtl numberPhys. Fluids 51374–1389.

    Article  ADS  Google Scholar 

  • Kubokawa, A. and Hanawa, K. (1984) A theory of semigeostrophic gravity waves and its application to theintrusion of a density current along a coast, Part 2J. Oceanogr. Soc. Jpn. 40260–270.

    Article  Google Scholar 

  • Kunze, E. (1990) The evolution of salt fingers in internal wave shearJ. Mar. Res. 481471–1504.

    Google Scholar 

  • Kunze, E., Williams, A. J. III and Schmitt, R. W. (1987) Optical microstructure in the thermohaline staircaseeast of BarbadosDeep-Sea Res. 341697–1704.

    Article  Google Scholar 

  • Legg, S., McWilliams, J. and Gao, J., (1998) Localization of Deep Ocean Convection by a Mesoscale EddyJ. Phys. Oceanogr.in press.

    Google Scholar 

  • Linden, P.F. and Redondo, J.M. (1991) Molecular mixing in Rayleigh-Taylor instability.

    Google Scholar 

  • Lister, J.R. and Buffett, B.A. (1995) The strength and efficiency of thermal and compositional convection in the geodynamoPhys. Earth Planet. Inter. 9117–30.

    Article  Google Scholar 

  • Lueck, R. (1987) Microstructure measurements in a thermohaline staircaseDeep-Sea Res. 341677–1688. Marmorino, G. O. (1987) Observations of small-scale mixing processes in the seasonal thermocline. Part 1. Salt fingering.J. Phys. Ocean. 171339–1347.

    Article  Google Scholar 

  • Martin, D., Griffiths, R.W. and Campbell, I.H. (1987) Compositional and thermal convection in magma chambersContrib. Mineral. Petrol. 96465–475.

    Article  ADS  Google Scholar 

  • Maxworthy, T. and Narimousa, S. (1994) Unsteady turbulent convection into a homogeneous, rotating fluid, with oceanographic applicationsJ. Phys. Oceanogr. 24865–887.

    Article  ADS  Google Scholar 

  • McDougall, T. J. (1985a) Double-diffusive interleaving. Part 1. Linear stability analysisJ. Phys. Ocean. 151532–1541.

    Article  ADS  Google Scholar 

  • McDougall, T. J. (1985b) Double-diffusive interleaving. Part II. Finite amplitude steady state interleavingJ. Phys. Ocean. 151542–1556.

    Article  ADS  Google Scholar 

  • McDougall, T. J. and Ruddick, B. R. (1992) The use of ocean icrostructure to quantify both turbulent mixing and salt fingeringDeep-Sea Res. 391931–1952.

    Article  Google Scholar 

  • Nagawa, Y. and Frenzen, P. (1955) A theoretical and experimental study of cellular convection in rotating fluidsTellus 71–21.

    Article  ADS  Google Scholar 

  • Niemela, J. J., Ahlers, G. and Cannell, D. S. (1990) Localised travelling-wave states in binary-fluid convectionPhys. Rev. Lett. 641365.

    Article  ADS  Google Scholar 

  • Park, Y-G and Whitehead, J.A. (1998) Rotating Convection Driven by Differential Bottom HeatingJ. Phys. Oceanogr.in press.Part I: Global MixingPhys. Fluids 31265–1277.

    Google Scholar 

  • Pearce, A.F. and Griffiths, R.W. (1991) The Mesoscale Structure of the Leeuwin Current: A Comparison of Laboratory Models and Satellite ImageryJ. Geophys. Res. 9616739–16757.

    Article  ADS  Google Scholar 

  • Predtechensky, A.A., McCormick, W.D., Swift, J.B., Rossberg, A.G. and Swinney, H. L. (1994) Traveling wave instability in sustained double-diffusive convectionPhys. Fluids 63923–3935.

    Article  ADS  MATH  Google Scholar 

  • Price, J. F. and Barringer, M. O.(1994) Outflows and deep water production by marginal seasProg. Oceanogr. 33161–200.

    Article  ADS  Google Scholar 

  • Ribbe, J. and Tomczak, M., On convection and the formation of Subantarctic Mode Water in the Fine Resolution Antarctic Model (FRAM)J. Marine Systems 13137–154.

    Google Scholar 

  • Rossby, H. T. (1969) A study of Bünard convection with and without rotationJ. Fluid Mech. 36309–335. Ruddick, B. R. and Turner, J. S. (1979) The vertical length scale of double-diffusive intrusionsDeep-Sea Res. 26A1903–1913.

    Google Scholar 

  • Sakai, S. (1997) The horizontal scale of rotating convection in the geostrophic regime, J. Fluid Mech.33385–95.

    Article  ADS  MATH  Google Scholar 

  • Schmitt, R. W. (1994) Double diffusion in oceanography, Ann.Rev. Fluid Mech. 26255–285.

    Article  ADS  Google Scholar 

  • Schmitt, R. W. and Georgi, D. T. (1982) Fine-structure and microstructure in the North Atlantic CurrentJ. Mar. Res. 40679–705 (Suppl.).

    Google Scholar 

  • Schmitt, R. W., Perkins, H., Boyd, J. D. and Stalcup, M. C. (1987) C-SALT: an investigation of thethermohaline staircase in the western tropical North AtlanticDeep-Sea Res. 341697–1704.

    Article  Google Scholar 

  • Shen, C. and Veronis, G. (1997) Numerical simulations of two-dimensional salt fingersJ. Geophys. Res. 10232131–23144.

    Google Scholar 

  • Shen, C. Y. (1989) The evolution of the double-diffusive instability: salt fingers.Phys. Fluids A11829–1844.

    Google Scholar 

  • Shraiman, B. I. and Siggia, E. D. (1990) Heat transport in high-Rayleigh number convectionPhys. Rev.A 423650–3653.

    ADS  Google Scholar 

  • Siggia, E.D. (1994) High Rayleigh number convectionAnn. Rev. Fluid Mech. 26137–168.

    Article  MathSciNet  ADS  Google Scholar 

  • St. Laurent, L. and Schmitt, R. W. (1998) The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release ExperimentJ. Phys. Oceanogr.in press.

    Google Scholar 

  • Stamp, A. P. and Griffiths, R. W. (1997) Turbulent travelling-wave convection in a two-layer systemPhys. Fluids 9963–969.

    Article  ADS  Google Scholar 

  • Stamp, A.P.Hughes, G. O., Nokes, R.I.and Griffiths, R. W. (1998) The coupling of waves and convectionJ. Fluid Mech. 372231–271.

    Article  ADS  MATH  Google Scholar 

  • Stern, M. E. (1975)Ocean Circulation PhysicsAcademic, New York.

    Google Scholar 

  • Taylor, J. R. (1991) Laboratory measurements on the formation of salt fingers after the decay of turbulenceJ. Geophys. Res. 96497–510.

    Google Scholar 

  • Turner, J.S. and Campbell, I.H. (1986) Convection and mixing in magma chambersEarth Sci. Rev.23255–352.

    Article  ADS  Google Scholar 

  • Turner, J.S. (1973)Buoyancy Effects in Fluids.Cambridge University Press, London.

    Book  MATH  Google Scholar 

  • Visbeck, M., Marshall, J. and Jones, H. (1996) Dynamics of isolated convective regions in the oceanJ. Phys. Oceanogr. 261721–1734.

    Article  ADS  Google Scholar 

  • Werne, J. (1994) Plume model for the boundary-layer dynamics in hard turbulencePhys. Review E 494072–4076.

    Article  ADS  Google Scholar 

  • Whitehead, J.A., Marshall, J. And Hufford, G.E. (1996) Localized convection in rotating stratified fluidJ. Geophys. Res. 10125705–25721.

    Article  ADS  Google Scholar 

  • Worster, M.G., Huppert, H.E. and Sparks, R.S.J. (1990) Convection and crystallization in magma cooled from aboveEarth Planet. Sci. Lett. 10178–89.

    Article  ADS  Google Scholar 

  • Wu, X. and Libchaber, A. (1992) Scaling relations in thermal turbulence: the aspect ratio dependencePhys. Rev.A45842–845.

    ADS  Google Scholar 

  • Yoshida, J., Nagashime, H. and Nino, H. (1989) The behaviour of double-diffusive intrusions in a rotating systemJ. Geophys. Res. 944923–4937.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Griffiths, R.W. (2000). Developments in High-Rayleigh Number Convection. In: Kerr, R.M., Kimura, Y. (eds) IUTAM Symposium on Developments in Geophysical Turbulence. Fluid Mechanics and Its Applications, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0928-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0928-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3794-5

  • Online ISBN: 978-94-010-0928-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics