Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 58))

Abstract

The development of what is now called large eddy simulation is traced from the early days of numerical weather prediction to Smagorinsky’s 1963 introduction of a first order subgrid scale closure, Lilly’s analysis of the technique and utilization in 2-dimensional simulations of convection, and Deardorff’s further development and exploitation through 3-dimensional simulations of boundary layer flows. Smagorinsky’s closure was originally based on an empirical smoothing device developed by von Neumann and Richtmyer for 1-dimensional shock wave calculations, extended to 2- and 3-dimensional flow by Charney and Phillips. In a series of papers from 1972–80, Deardorff largely developed and defined large eddy simulation, though not under that name. His work was aimed at elucidating the structure and behaviour of turbulent boundary layers at high Reynolds and low Mach numbers, and was interpersed with a series of laboratory simulations and theoretical analyses. He introduced or initially applied several modeling concepts and techniques which have been followed, and in most cases are still utilized in some form, by investigators in geophysical and engineering fluid dynamics. The sequence, methods and results are reviewed and reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: two dimensional incompressible flow. PartI. J. Comput. Phys. 1119–143.

    Article  ADS  MATH  Google Scholar 

  • Blair, A., Metropolis, N., von Neumann, J., Taub, A. H., & Tsingou, M., 1959: A study of a numerical solution to a two-dimensional hydrodynamical problem.Math. Tables e4 other Aids to Computation 13145–184.

    Google Scholar 

  • Busse, F. H., 1970: Bounds for turbulent shear flow.J. Fluid Mech. 41219–240. Charney, J. G., Fjortoft, R. $ von Neumann, J., 1950: Numerical integration of the barotropic vorticity equation.Tellus 2237–254.

    Google Scholar 

  • Corrsin, S., 1961: Turbulent flow.American Scientist 49300–325.

    MathSciNet  Google Scholar 

  • Crow, S. C., 1968: Viscoelastic properties of fine-grained incompressible turbulence.J. Fluid Mech. 331–20.

    Article  ADS  MATH  Google Scholar 

  • Deardorff, J. W., 1970a: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.J. Fluid Mech. 41453–480.

    Article  ADS  MATH  Google Scholar 

  • Deardorff, J. W., 1970b: A three-dimensional numerical investigation of the idealized planetary boundary layer.Geoph. Fluid Dyn. 1377–410.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1970e: Preliminary results from numerical integrations of the unstable planetary boundary layer.J. Atmos. Sei. 271209–1211.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1970d: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection.J. Atmos. Sei. 271211–1213.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1971: On the magnitude of the subgrid scale eddy coefficient.J. Comput. Phys. 7120–132.

    Article  ADS  MATH  Google Scholar 

  • Deardorff, J. W., 1972a: Parameterization of the planetary boundary layer for use in general circulation models.Mon. Wea. Rev.100, 93–106.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1972b: Numerical investigation of neutral and unstable planetary boundary layers.J. Atmos. Sei. 2991–114.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1972e: Theoretical expression for the countergradient vertical heat flux.J. Geoph. Res. 775900–5904.

    Google Scholar 

  • Deardorff, J. W., 1973: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence.J. Fluids Eng.Sept. 429–438.

    Google Scholar 

  • Deardorff, J. W., 1974a: Computer and laboratory modeling of the vertical diffusion of nonbuoyant particles in the mixed layer. Adv.Geoph. 18B187–200.

    Google Scholar 

  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and meanstructure of a heated planetary boundary layer.Bound. Lay. Meteor. 781–106.

    ADS  Google Scholar 

  • Deardorff, J. W., 1974: Three-dimensional numerical study of turbulence in an entrainingmixed layer.Bound. Lay. Meteor. 7199–226.

    Google Scholar 

  • Deardorff, J. W., 1975: A parameterization of diffusion into the mixed layer.J. Appl. Meteor. 141451–1458.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1976: A laboratory model of diffusion into the convective planetary boundary layer.Q. J. Roy. Meteor. Soc. 102427–445.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1977: A parameterization of ground-surface moisture content for use in atmospheric prediction models.J. Appl. Meteor. 161182–1185.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1978a: A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer.Atmos. Env. 121305–1311.

    Article  Google Scholar 

  • Deardorff, J. W., 1978b: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation.J. Geoph. Res. 831889–1903.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model.Bound. Lay. Meteor. 18495–527.

    Article  ADS  Google Scholar 

  • Deardorff, J. W.&Peskin, R. L., 1970: Lagrangian statistics from numerically integrated turbulent shear flow.Phys. Fluids 13584–595.

    Article  ADS  MATH  Google Scholar 

  • Deardorff, J. W., Willis, G. E., & Lilly, D. K., 1969: Laboratory investigation of non-steady penetrative convection.J. Fluid Mech. 357–31.

    Article  ADS  Google Scholar 

  • Emmons, H. W., 1954: Shear flow turbulence.Proc. 2nd U. S. National Congress Appl. Mechl ASME1–12.

    Google Scholar 

  • Fjortoft, R., 1953: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow.Tellus 5225–230.

    Article  MathSciNet  ADS  Google Scholar 

  • Fox, D. G. & Deardorff, J. W., 1972: Computer methods for simulation of multidimen-sional, nonlinear, subsonic, incompressible flow.J. Heat Transfer 94337–346.

    Article  Google Scholar 

  • Fromm, J. E.&Harlow, F. H., 1963: Numerical solution of the problem of vortex streetdevelopment.Phys. Fluids 6975–982.

    Article  ADS  Google Scholar 

  • Fromm, J. E., 1965: Numerical solutions of the nonlinear equations for a heated fluid layer.Phys. Fluids 81757–1769.

    Article  ADS  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P. & Cabot, W. H., 1991: A dynamic subgrid-scale eddy viscosity model.Phys. Fluids A 31760–1765.

    Article  ADS  MATH  Google Scholar 

  • Harlow, F. H. & Welch, J. F., 1965: Numerical calculation of time-dependent viscousincompressible flow of fluid with a free surface.Phys. Fluids 82182–2189.

    Article  ADS  MATH  Google Scholar 

  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence.Phys. Fluids 101417–1423.

    Google Scholar 

  • Leonard, A., 1974: Energy cascade in large-eddy simulations of turbulent fluid flow.Adv. Geoph. 18A237–248.

    ADS  Google Scholar 

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection.Tellus 14148–172.

    Google Scholar 

  • Lilly, D. K., 1964: Numerical solutions for the shape-preserving two-dimensional thermal convection element.J. Atmos. Sci. 2183–98.

    Article  ADS  Google Scholar 

  • Lilly, D. K., 1965: On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems.Mon. Wea. Rev. 9311–26.

    Article  ADS  Google Scholar 

  • Lilly, D. K., 1966a: On the Application of the Eddy Viscosity Concept in the Inertial Sub-range of Turbulence. Unpublished ms. #123. National Center for Atmospheric Research. 19 pp. Ms. available from the author.

    Google Scholar 

  • Lilly, D. K., 1966: Theoretical models of convection elements and ensembles.Advances in Numerical Weather Prediction.1995–1996 seminar series sponsored by the Travellers Research Center, Inc., 24–33.

    Google Scholar 

  • Lilly, D. K., 1967: The representation of small scale turbulence in numerical simulation experiments.Proc. IBM Sci. Computing Symp. on Env. Sci. IBM Form No. 3201951195–209.

    Google Scholar 

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion.Q. J. Roy. Meteor. Soc. 94292–309.

    Article  ADS  Google Scholar 

  • Lindzen, R. S., Lorenz, E. N. & Platzman, G. W., editors, 1990: The Atmosphere-a Challenge.The Science of Jule Gregory Charney. American Meteorological Society Historical Monograph Series321.

    Google Scholar 

  • Malkus, J. S. & Witt, G., 1959: The evolution of a convective element: a numerical calculation.The Rossby Memorial Volume(ed. B. Bolin, Rockfeller Institute Press) 425–439.

    Google Scholar 

  • Mason, P. J. & Thompson, D. J., 1992: Stochastic backscatter in large-eddy simulations of boundary layers.J. Fluid Mech. 24251–78.

    Article  ADS  MATH  Google Scholar 

  • Meneveau, C., 1994: Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests.Phys. Fluids 6815–833.

    Article  ADS  MATH  Google Scholar 

  • Ogura, Y. & Phillips, N. A., 1962: Scale analysis of deep and shallow convection in theatmosphere.J. Atmos. Sci. 19 173–179.

    Article  ADS  Google Scholar 

  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionallyunstable atmosphere: a numerical calculation. J. Atmos. Sci., 20, 407–424.

    Article  ADS  Google Scholar 

  • Patterson, G. S. & Orszag, S. A., 1971: Spectral calculations of isotropic turbulence:efficient removal of aliasing interactions. Phys. Fluids, 14, 2538–2541.

    Article  ADS  MATH  Google Scholar 

  • Phillips, N. A., 1956: The general circulation of the atmosphere: a numerical experiment. Q. J. Roy. Meteor. Soc., 82, 123–164.

    Article  ADS  Google Scholar 

  • Phillips, N. A., 1959: Am example of non-linear computational instability. The RossbyMemorial Volume. (ed. B. Bolin, Rockefeller Institute Press), 501–504.

    Google Scholar 

  • Prandtl, L., 1945: Uber ein neues Formelsystem für die ausgebildete Turbulenz. Nachr.d. Akad. d. Wissensch. in Goettingen Math. u. Phys. Klasse, 6.

    Google Scholar 

  • Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge Univ. Press, 7 236.

    Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99–164.

    Article  ADS  Google Scholar 

  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, (ed. B. Galperin & S. Orszag, Cambridge Univ. Press.)

    Google Scholar 

  • Sommeria, G., 1976: Three-dimensional simulation of turbulent process in an undisturbed trade wind boundary layer. J. Atmos. Sci., 33, 216–241.

    Article  ADS  Google Scholar 

  • Sommeria, G. & Deardorff, J. W., 1977: Subgrid-scale condensation in models of non-precipitating clouds. J. Atmos. Sci., 34, 344–355.

    Article  ADS  Google Scholar 

  • Sommeria, G. & LeMone, M. A., 1978: Direct testing of a three-dimensional model ofthe planetary boundary layer against experimental data. J. Atmos. Sci., 35, 25–39.

    Article  ADS  Google Scholar 

  • Sullivan, P., McWilliams, J. C. & Moeng, C.-H., 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound. Lay. Meteor., 71, 247–276.

    Article  ADS  Google Scholar 

  • Willis, G. E. & Deardorff, J. W., 1974: A laboratory model of the unstable planetaryboundary layer. J. Atmos. Sci., 31, 1297–1307.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lilly, D.K. (2000). The Meteorological Development of Large Eddy Simulation. In: Kerr, R.M., Kimura, Y. (eds) IUTAM Symposium on Developments in Geophysical Turbulence. Fluid Mechanics and Its Applications, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0928-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0928-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3794-5

  • Online ISBN: 978-94-010-0928-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics