Skip to main content

Enantioselective Oxidations Catalyzed by Peroxidases and Monooxygenases

  • Chapter
Enzymes in Action

Part of the book series: NATO Science Partnership Sub-Series: 1: ((ASDT,volume 33))

Abstract

Enantiomerically pure sulfoxides are excellent chiral auxiliaries for asymmetric synthesis and in the preparation of several enantiopure biologically active compounds. For these reasons we have explored biocatalytic approaches for the synthesis of sulfoxides based on the use of heme peroxidases and flavin monooxygenases, such as chloroperoxidase (CPO) and cyclohexanone monooxygenase (CMO), respectively. By using isolated enzymes or whole-cell biotransformations, we have prepared alkyl aryl sulfoxides, 1,3-dithioacetal-1-oxides and dialkyl sulfoxides in high enantiomeric excess (ee). Recent experiments from our and other laboratories have shown that chloroperoxidase is also able to catalyze a broad spectrum of stereoselective epoxidation reactions. The substrate repertoire includes substituted styrenes, straight chain aliphatic and cyclic cis-olefins. The enzyme is also able to perform benzylic hydroxylation and hydroxylation of alkynes with high ee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dawson, J.H. (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases, Science 240, 433–439.

    Article  CAS  Google Scholar 

  2. Marnett, L.J. and Kennedy, T.A. (1995) Comparison of the peroxidase activity of hemoproteins and cytochrome P450, in Ortiz de Montellano, P.R. (ed.), Cytochrome P450. Structure,Mechanism, and Biochemistry, Plenum Press, New York, pp. 49–80.

    Google Scholar 

  3. Gajhede, M., Schuller, D.J., Enriksen, A., Smith, A.T., and Poulos, T.L. (1997) Crystal structure of horseradish peroxidase Cat 2.15 A resolution, Nature Structural Biology 4, 1032–1038.

    Article  CAS  Google Scholar 

  4. Mikolajczyk, M., Drabowicz, J., and Kielbasinski, P. (1997) Chiral Sulfur Reagents; Applications in Asymmetric and Stereoselective Synthesis, CRC Press, Boca Raton.

    Google Scholar 

  5. Carreño, M.C. (1995) Applications of sulfoxides to asymmetric synthesis of biologically active compounds, Chem. Rev. 95, 1717–1760.

    Article  Google Scholar 

  6. Whitesell, J.K. and Wong, M.-S. (1994) Asymmetric synthesis of chiral sulfinate esters and sulfoxides. Synthesis of sulforaphane, J. Org . Chem. 59, 597–601.

    Article  CAS  Google Scholar 

  7. Colonna, S., Gaggero, N., Carrea, G., and Pasta, P. (1992) Horseradish peroxidase catalysed sulfoxidation is enantioselective, J. Chem. Soc., Chem. Commun., 357–358.

    Google Scholar 

  8. Ozaki, S. and Ortiz de Montellano, P.R. (1995) Molecular engineering of horseradish peroxidase: thioeter sulfoxidation and styrene epoxidation by Phe-41 leucine and threonine mutants, J. Am. Chem. Soc. 117, 7056–7064.

    Article  CAS  Google Scholar 

  9. Sundaramoorthy, M., Temer, J., and Poulos, T.L. (1995) The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 functional hybrid, Structure 3, 1367–1377.

    Article  CAS  Google Scholar 

  10. Colonna, S., Gaggero, N., Manfredi, A., Casella, L., Gullotti, M., Carrea, G., and Pasta, P. (1990) Enantioselective oxidations of sulfides catalyzed by chloroperoxidase, Biochemistry 29, 10465–10468.

    Article  CAS  Google Scholar 

  11. Colonna, S., Gaggero, N., Casella, L., Carrea, G., and Pasta, P. (1992) Chloroperoxidase and hydrogen peroxide: an efficient system for enzymatic enantioselective sulfoxidation, Tetrahedron: Asymmetry 3, 95–106.

    Article  CAS  Google Scholar 

  12. Casella, L., Gullotti, M., Ghezzi, R., Poli, S., Beringhelli, T., Colonna, S., and Carrea, G. (1992) Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes, Biochemistry 31, 9451–9459.

    Article  CAS  Google Scholar 

  13. Fu, H., Kondo, H., Ichikawa, Y., Look, G.C., and Wong, C.-H. (1992) Chloroperoxidase-catalyzed asymmetric synthesis: enantioselective reactions of chiral hydroperoxides with sulfides and bromohydration of glycals, J. Org . Chem. 57, 7265–7270.

    Article  CAS  Google Scholar 

  14. van Deurzen, M.P.J., Remkes, I.J., van Rantwijk, F., and Sheldon, R.A. (1997) Chloroperoxidase catalyzed oxidations in t-butyl alcohol/water mixtures, J. Mol. Catal. A: Chem. 117, 329–337.

    Article  Google Scholar 

  15. Colonna, S., Gaggero, N., Carrea, G., and Pasta, P. (1997) A new enzymatic enantioselective synthesis of dialkyl sulfoxides catalysed by monooxygenases, J. Chem. Soc., Chem. Commun., 439–440.

    Google Scholar 

  16. van de Velde, F., van Rantwijk, F., and Sheldon, R.A. (1999) Selective oxidations with molecular oxygen, catalyzed by chloroperoxidase in the presence of a reductant, J. Mol. Catal. B: Enz. 6, 453461.

    Google Scholar 

  17. Pasta, P., Carrea, G., Monzani, E., Gaggero, N., and Colonna, S. (1999) Chloroperoxidase catalyzed enantioselective oxidation of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidant, Biotechnol. and Bioengineering 62, 489–493.

    Article  CAS  Google Scholar 

  18. Allenmark, S.G. and Andersson, M.A. (1996) Chloroperoxidase-catalyzed asymmetric synthesis of a series of aromatic cyclic sulfoxides, Tetrahedron: Asymmetry 7, 1089–1094.

    Article  CAS  Google Scholar 

  19. Walsh, C.T. and Chen, Y.-C.J. (1988) Enzymic Baeyer-Villiger oxidations by flavin-dependent monooxygenases, Angew. Chem. Int. Ed. Engl. 27, 333–343.

    Article  Google Scholar 

  20. Light, D.R., Waxman, D.J., and Walsh, C. (1982) Studies on the chirality of sulfoxidation catalyzed by bacterial flavoenzyme cyclohexanone monooxygenase and hog liver flavin adenine dinucleotide containing monooxygenase, Biochemistry 21, 2490–2498.

    Google Scholar 

  21. Canea, G., Redigolo, B., Riva, S., Colonna, S., Gaggero, N., Battistel, E., and Bianchi, D. (1992) Effects of substrate structure on the enantioselectivity and stereochemical course of sulfoxidation catalyzed by cyclohexanone monooxygenase, Tetrahedron: Asymmetry 3, 1063–1068.

    Article  Google Scholar 

  22. Secundo, F., Carrea, G., Dallavalle, S., and Franzosi, G. (1993) Asymmetric oxidation of sulfides by cyclohexanone monooxygenase, Tetrahedron: Asymmetry 4, 1981–1982.

    Article  CAS  Google Scholar 

  23. Pasta, P., Carrea, G., Holland, H.L., and Dallavalle, S. (1995) Synthesis of chiral benzyl alkyl sulfoxides by cyclohexanone monooxygenase from Acinetobacter NCIB 9871, Tetrahedron: Asymmetry 6, 933–936.

    Article  CAS  Google Scholar 

  24. Secundo, F., Carrea, G., Riva, S., Battistel, E., and Bianchi, D. (1993) Cyclohexanone monooxygenase catalyzed oxidation of methyl phenyl sulfide and cyclohexanone with macromolecular NADP in a membrane reactor, Biotechnol. Letters 15, 865–870.

    Article  CAS  Google Scholar 

  25. Ottolina, G., Pasta, P., Carrea, G., Colonna, S., Dallavalle, S., and Holland, H.L. (1995) A predictive active site model for the cyclohexanone monooxygenase catalyzed oxidation of sulfides to chiral sulfoxides, Tetrahedron: Asymmetry 6, 1375–1386.

    Google Scholar 

  26. Colonna, S., Gaggero, N., Bertinotti, A., Carrea, G., Pasta, P., and Bernardi, A. (1995) Enantioselective oxidation of 1,3-dithioacetals catalysed by cyclohexanone monooxygenase, J. Chem. Soc., Chem. Commun., 1123–1124.

    Google Scholar 

  27. Alphand, V., Gaggero, N., Colonna, S., Pasta, P., and Furstoss, R. (1997) Microbiological transformations 36: preparative scale synthesis of chiral thioacetal and thioketal sulfoxides using whole-cell biotransformations, Tetrahedron 53, 9965–9706.

    Article  Google Scholar 

  28. Naruta, Y., Tani, F., Ishihara, N., and Maruyama, K. (1991) Catalytic and asymmetric epoxidation of olefins with iron complexes of “twin-coronet” porphyrins. A mechanistic insight into the chiral induction of styrene derivatives, J. Am. Chem. Soc. 113, 6865–6872.

    Article  CAS  Google Scholar 

  29. Jacobsen, E.N., Zhang, W., Muci, A.R., Ecker, J.R., and Deng, L. (1991) Highly enantioselective epoxidation catalysts derived from I,2-diaminocyclohexane, J. Am. Chem. Soc. 113, 7063–7064.

    Article  CAS  Google Scholar 

  30. Ortiz de Montellano, P.R. (1995) Oxygen activation and reactivity, in Ortiz de Montellano, P.R. (ed.), Cytochrome P450. Structure, Mechanism, and Biochemistry, Plenum Press, New York, pp. 245–303.

    Google Scholar 

  31. Neidleman, S.L. and Geigert, J. (1992) Biohalogenation: Principles, Basic Roles, and Applications, Ellis Horwood, Chichester.

    Google Scholar 

  32. May, S.W., Schwartz, R.D. Abbott, B.J., and Zaborsky, O.R. (1975) Structural effects on the reactivity of substrates and inhibitors in the epoxidation system of Pseudomonas oleovorans, Biochim. Biophys., Acta 403, 245–255.

    CAS  Google Scholar 

  33. Fruetel, J.A., Collins, J.R., Camper, D.L., Loew, G.H., and Ortiz de Montellano, P.R. (1992) Calculated and experimental absolute stereochemistry of the styrene and ß-methylstyrene epoxides formed by cytochrome P450.,,,, J. Am. Chem. Soc. 114, 6987–6993.

    Article  CAS  Google Scholar 

  34. Wistuba, D., Nowotny, H.-P., Träger, O., and Schurig, V. (1989) Cytochrome P-450-catalyzed asymmetric epoxidation of simple prochiral and chiral aliphatic alkenes: species dependence and effect of enzyme induction on enantioselective oxirane formation, Chirality 1, 127–136.

    Article  CAS  Google Scholar 

  35. Gross, Z. and Nimri, S. (1995) Seeing the long-sought intermediate in the reaction of oxoiron(IV) porphyrin cation radicals with olefins, J. Am. Chem. Soc. 117, 8021–8022.

    Article  CAS  Google Scholar 

  36. Ortiz de Montellano, P.R., Choe, Ortiz de Montellano, P.R., Choe, Y.S., DePillis, G., and Catalano, C.E. (1987) Structure-mechanism relationships in hemoproteins, J. Biol. Chem. 262, 11641–11646.

    CAS  Google Scholar 

  37. Geigert, J., Lee, T.D., Dalietos, D.J.,Hirano, D.S., and Neidleman, S.L. (1986) Epoxidation of alkenes by chloroperoxidase catalysis, Biochem. Biophys. Res. Commun. 136, 778–782.

    Article  CAS  Google Scholar 

  38. Elfarra, A.A., Duescher, R.J., and Pasch, C.M. (1991) Mechanisms of 1,3-butadiene oxidations to butadiene monoxide and crotonaldehyde by mouse liver microsomes and chloroperoxidase, Arch. Biochem. Biophys. 286, 244–251.

    Article  CAS  Google Scholar 

  39. Colonna, S:, Gaggero, N., Casella, L., Carrea, G., and Pasta, P. (1993) Enantioselective epoxidation of styrene derivatives by chloroperoxidase catalysis, Tetrahedron: Asymmetry 4, 1325–1330.

    Google Scholar 

  40. Allain, E.J., Hager, L.P., Deng, L., and Jacobsen, E.N. (1993) Highly enantioselective epoxidation of disubstituted alkenes with hydrogen peroxide catalyzed by chloroperoxidase, J. Am. Chem. Soc. 115, 4415–4416.

    Article  CAS  Google Scholar 

  41. Dexter, A.F. and Hager, L.P. (1995) Transient heme N-alkylation of chloroperoxidase by terminal alkenes and alkynes, J. Am. Chem. Soc. 117, 817–818.

    Article  Google Scholar 

  42. Zaks, A. and Dodds, D.R. (1995) Chloroperoxidase-catalyzed asymmetric oxidations: substrate specificity and mechanistic study, J. Am. Chem. Soc. 117, 10419–10424.

    Article  CAS  Google Scholar 

  43. Dexter, A.F., Lakner, F.J., Campbell, R.A., and Hager, L.P. (1995) Highly enantioselective epoxidation of 1,1-disubstituted alkenes catalyzed by chloroperoxidase, J. Am. Chem. Soc. 117, 64126413.

    Google Scholar 

  44. Lakner, F.J. and Hager, L.P. (1996) Chloroperoxidase as enantioselective epoxidation catalyst: an efficient synthesis of (R)-(-)-mevalonolactone, J. Org . Chem. 61, 3923–3925.

    Article  CAS  Google Scholar 

  45. Lakner, F.J., Cain, K.P., and Hager, L.P. (1997) Enantioselective epoxidation of w-Bromo-2-methyl-lalkenes catalyzed by chloroperoxidase. Effect of chain length on selectivity and efficiency, J. Am. Chem. Soc. 119, 443–444.

    Article  CAS  Google Scholar 

  46. Hu, S. and Hager, L.P. (1999) Asymmetric epoxidation of functionalized cis-olefins catalyzed by chloroperoxidase, Tetrahedron Letters 40,1641–1644.

    Article  CAS  Google Scholar 

  47. Hu, S. and Hager, L.P. (1999) Highly enantioselective propargylic hydroxylations catalyzed by chloroperoxidase, J. Am. Chem. Soc. 121, 872–873.

    Article  CAS  Google Scholar 

  48. Seelbach, K., van Deurzen, M.P.J., van Rantwijk, F., Sheldon, R.A., and Kragl, U. (1997) Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation, Biotechnol. Bioengineering 55, 283–288.

    Article  CAS  Google Scholar 

  49. Schmidt-Dannert, C. and Arnold, F.H. (1999) Directed evolution of industrial enzymes, TIBTECH 17,135–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colonna, S., Gaggero, N., Richelmi, C., Pasta, P. (2000). Enantioselective Oxidations Catalyzed by Peroxidases and Monooxygenases. In: Zwanenburg, B., Mikołajczyk, M., Kiełbasiński, P. (eds) Enzymes in Action. NATO Science Partnership Sub-Series: 1:, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0924-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0924-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6696-6

  • Online ISBN: 978-94-010-0924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics