Skip to main content

Recent Advances on Bioreductions Mediated by Baker’s Yeast and Other Microorganisms

  • Chapter

Part of the book series: NATO Science Partnership Sub-Series: 1: ((ASDT,volume 33))

Abstract

The bioreductions mediated by BY and other microorganisms are considered mainly from a preparative point of view. The use of other microorganisms is reported when BY is either unable to perform the reaction or if this proceeds with moderate enantioselectivity or when the opposite stereochemical outcome of the reaction should be obtained. The biotransformation of nitrogen-containing groups is especially addressed. The bioreductions of trinitrotoluene is presented as an example of the bioremediation of explosives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Servi, Ed. (1992) Microbial Reagents in Organic Synthesis, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  2. Holland, H.L. (1998) Microbial trasformations, Current Opinion in Chemical Biology 2 77–84.

    Article  CAS  Google Scholar 

  3. . Servi, S. (1990) Baker’s yeast as a reagent in organic synthesis, Synthesis 1–25.

    Google Scholar 

  4. Csuk, R. and Glänzer, B.I. (1991) Baker’s yeast mediated transformations in organic chemistry, Chem. Rev. 91 4997.

    Article  Google Scholar 

  5. D’Arrigo, P., Pedrocchi-Fantoni, G. and Servi, S. (1997) Old and new synthetic capacities of baker’s yeast, Adv. Appl. Microbiol. 44 81–123.

    Article  Google Scholar 

  6. Pereira, R.S. (1998) The use of baker’s yeast in the generation of asymmetric centers to produce chiral drugs and other compounds, Crit. Rev. Biotechnol. 18 25–83.

    Article  Google Scholar 

  7. Kometani,T., Yoshii, H. and Matsuno, R. (1996) Large-scale production of chiral alcohols with bakers’ yeast, J. Mol. Catal. B: Enzym. 1, 45–52.

    Article  CAS  Google Scholar 

  8. Santaniello, E., Ferraboschi, P., Grisenti, P. and Manzocchi, A. (1992) The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks, Chem. Rev. 92 1071–1140.

    Article  CAS  Google Scholar 

  9. Takeshita, M., Yaguchi, R. and Unuma, Y. (1995) Enzymatic synthesis of (1R, 2S)- and (1S, 2R)-2methyl-2,3-epoxy-1-phenylpropanols, Heterocycles 40967–974.

    Article  CAS  Google Scholar 

  10. Ferraboschi, P., Casati, S. and Santaniello, E. (1994) Baker’s yeast-mediated hydrogenation of 2-substituted allyl alcohols: a biocatalytic route to a new highly enantioselective synthesis of (R)-2-methyl alkanols, Tetrahedron: Asymmetry 5 19–20.

    Article  CAS  Google Scholar 

  11. Fenaboschi, P., Reza Elahi, S., Verza, E., Meroni Rivolta, F. and Santaniello, E. (1996) Baker’s yeast mediated biohydrogenation of 2-substituted allyl alcohols: synthesis of enantiomerically pure (2S)-3benzyloxy-2-methyl-1-propanol, Synlett 1176–1178.

    Google Scholar 

  12. Levene, P.A. and Walti, A. (1943) 1-Propylene glycol, Organic Syntheses Coll. Vol. II, 545–547.

    Google Scholar 

  13. Seebach, D., Sutter, M.A., Weber, R.H. and Züger, M.F. (1985) Yeast reduction of ethyl acetoacetate: (S)-(+)-ethyl 3-hydroxybutanoate, Organic Syntheses 63 1–9.

    Article  CAS  Google Scholar 

  14. Mori, K. and Mori, H. (1990) Yeast reduction of 2,2-dimethylcyclohexane-1,3-dione: (S)- (+)-3-hydroxy-2,2dimethylcyclohexanone, ibid. 68 56–63.

    CAS  Google Scholar 

  15. Prelog, V. (1964) Specification of the stereospecificity of some oxidoreductases by diamond lattice sections, Pure Appl. Chem. 9 119–130.

    Article  CAS  Google Scholar 

  16. Ward, O.P. and Young, C.S. (1990) Reductive biotransformations of organic compounds by cells or enzymes of yeast, Enzyme Microb. Technol. 12 482–493.

    Article  CAS  Google Scholar 

  17. Nakamura, K. (1992) Stereochemical control in microbial reduction, in S. Servi (ed.); Microbial Reagents in Organic Synthesis, Kluwer Academic Publishers, Dordrecht, pp.388–398.

    Google Scholar 

  18. Nakamura, K., Ushio, K., Oka, S. and Ohno, A. (1984) Stereochemical control in yeast reduction, Tetrahedron Lett. 25 3979–3982.

    Article  CAS  Google Scholar 

  19. Neuberg, C. and Nord, F.F. (1919) Die phytochemische reduktion der ketone. Biochemische darstellung optisch-aktiver sekundärer alkohole, Ber. 52 2237–2248.

    Google Scholar 

  20. Fogagnolo, M. Giovannini, P.P., Guerrini, A., Medici, A., Pedrini, P. and Colombi, N. (1998) Homochiral (R)- and (S)-1-heteroaryl-and 1-aryl-2-propanols via microbial redox, Tetrahedron: Asymmetry 9 2317–2327.

    Article  CAS  Google Scholar 

  21. Fantin, G., Fogagnolo, M., Giovannini, P.P., Medici, A., Pedrini, P., Gardini, F. and Lanciotti, R. (1996) Anti-Prelog microbial reduction of prochiral carbonyl compounds, Tetrahedron 52 3547–3552.

    Article  CAS  Google Scholar 

  22. Rykowsky, A., Lipinska, T., Guzik, E., Adamiuk, M. and Olender, E. (1997) 1,2,4 — Triazines in organic synthesis. 6. Enantioselective reduction of 5-acy1–1,2,4-triazines and their oximes by baker’s yeastPol. J. Chem. 71 69–76.

    Google Scholar 

  23. Takemoto, M. and Achiwa, K. (1994) Synthesis of optically active a-phenylpyridylmethanols with baker’s yeast, Chem. Pharm. Bull. 42 802–805.

    Article  CAS  Google Scholar 

  24. Huber, P., Bratovanov, S., Bienz, S., Syldatk, C. and Pietzsch, M. (1996) Chiral silicon groups as auxiliaries for enantioselective synthesis: access to optically active silanes by biotransformation and the enantiospecific preparation of (R)-(+)-1-phenylethanol, Tetrahedron: Asymmetry 7, 69–78.

    Article  CAS  Google Scholar 

  25. Maguire, A.R. and Lowney, D.G. (1997) Asymmetric reduction of 1-methylsulfonylalkan-2-ones with baker’s yeast, J. Chem. Soc.Perkin I, 235–238.

    Google Scholar 

  26. Dao, D.H., Okamura, M., Akasaka, T., Kawai, Y., Hida, K. and Ohno, A. (1998) Stereochemical control in microbial reduction. Part 31: reduction of alkyl 2-oxo-4-arylbutyrates by baker’s yeast under selected reaction conditions, Tetrahedron: Asymmetry 9 2725–2737.

    Article  CAS  Google Scholar 

  27. Eh, M. and Kalesse, M. (1995) Remarkable kinetic resolution of chiral 13-keto esters by baker’s yeast reduction, Synlett, 837–838.

    Google Scholar 

  28. Quir¨®s, M., Rebolledo, F., Liz, R. and Gotor, V. (1997) Enantioselective reduction of (3-keto amides by the fungus Mortierella isabellinaTetrahedron: Asymmetry 8 3035–3038.

    Article  Google Scholar 

  29. Quir¨®s, M., Rebolledo, F. and Gotor, V. (1999) Bioreduction of 2-oxocyclopentanecarboxamides: syntheses of optically active 2-aminomethyl-and 2-aminocyclopentanols, Tetrahedron: Asymmetry 10 473–486.

    Article  Google Scholar 

  30. Ferraboschi, P., Santaniello, E., Tingoli, M., Aragozzini, F. and Molinari, F. (1993) Microbial reduction of 2-keto acetals as a biocatalytic approach to the enantioselective synthesis of optically active 2-hydroxy acetals, Tetrahedron: Asymmetry 4 1931–1940.

    Article  CAS  Google Scholar 

  31. Tanikaga, R., Obata, Y. and Kawamoto, K.-i. (1997) Baker’s yeast mediated reduction of cyclohexanones containing a nitro or a sulfonyl group at C-3, Tetrahedron: Asymmetry 8 3101–3106.

    Article  CAS  Google Scholar 

  32. Danchet, S., Bigot, C., Buisson, D. and Azerad, R. (1997) Dynamic kinetic resolution in the microbial reduction of a-monosubstituted 3-oxoesters: the reduction of 2-carbethoxy-cycloheptanone and 2carbethoxy-cyclooctanone, Tetrahedron: Asymmetry 8 1735–1739.

    Article  CAS  Google Scholar 

  33. Fantin, G., Fogagnolo, M., Medici, A., Pedrini, P., Marotta, E., Monti, M and Righi, P. (1996) Microbial reduction of methyl-substituted bicyclo[3.2.0]hept-3-en-6-ones: a screening to homochiral endo-and exo-alcohols, Tetrahedron: Asymmetry 7, 277–282.

    Article  CAS  Google Scholar 

  34. Satoh, K., Imura, A., Miyadera, A., Kanai, K. and Yukimoto, Y. (1998) An efficient synthesis of a key intermediate of DU-6859a via asymmetric microbial reduction, Chem. Pharm. Bull. 46 587–590.

    Article  CAS  Google Scholar 

  35. Kometani, T. Sakai, Y., Matsumae, H. Shibatani, T. and Matsuno, R. (1997) Production of (2S,3S)2,3-dihydro-3-hydroxy-2-(4-methoxyphenyl)-1,5-benzothiazepin-4(511)-one, a key intermediate for Diltiazem synthesis, by bakers’ yeast-mediated reduction, J. Ferment. Bioeng. 84 195–199.

    Article  CAS  Google Scholar 

  36. Das, B., Madhusudhan, P. and Kashinatham, A. (1998) The first conversion of camptothecin to (S)mappicine by an efficient chemoenzymatic method, Bioorg. Med. Chem. Lett. 8 1403–1406.

    Article  CAS  Google Scholar 

  37. Boutoute, P., Mousset, G. and Veschambre, H. (1998) Regioselective or enantiogenic electrochemical and microbial reductions of 1,2-diketones, New J. Chem.,247–251.

    Google Scholar 

  38. Nakamura, K.,Kondo, S.-i., Kawai, Y., Hida, K., Kitano, K. and Ohno, A. (1996) Enantio-and regioselective-reduction of a-diketones by baker’s yeast, Tetrahedron: Asymmetry 7, 409–412.

    Article  Google Scholar 

  39. Crocq, V., Masson, C., Winter,J., Richard, C., Lemaitre, G., Lenay, J., Vivat, M., Buendia, J, and Prat, D. (1997) Synthesis of Trimegestone: the first industrial application of bakers’ yeast mediated reduction of a ketone, Org. Process. Res. Dev. 1 2–13.

    Article  CAS  Google Scholar 

  40. Fauve, A., Veschambre, H. (1988) Microbiological reduction of acyclic (3-diketones, J. Org . Chem. 53, 5215–5219.

    Article  CAS  Google Scholar 

  41. Matsumura, S., Kawai, Y., Takahashi, Y. and Toshima, K. (1994) Microbial production of (2R,4R)-2,4-pentanediol by enantioselective reduction of acetylacetone and stereoinversion of 2,4-pentanediol, Biotechnol. Lett. 16, 485–490.

    Article  CAS  Google Scholar 

  42. Ikeda, H., Sato, E., Sugai, T. and Ohta, H. (1996) Yeast-mediated synthesis of optically-active diols with C-2-symmetry and (R)-4-pentanolide, Tetrahedron 52, 8113–8127.

    Article  CAS  Google Scholar 

  43. Otten, S., Fröhlich, R. and Haufe, G. (1998) Synthesis and structural characterization of enantiopure (2R,5R)-(+)-2,5-dimethylthiolane, Tetrahedron: Asymmetry 9, 189–191.

    Article  CAS  Google Scholar 

  44. Uchiyama, M., Katoh, N., Mimura, R., Yokota, N., Shimogaichi, Y., Shimazaki, M. and Ohta, A. (1997) Highly enantioselective reduction of symmetrical diacetylaromatics with baker’s yeastTetrahedron: Asymmetry 8, 3467–3474.

    Article  CAS  Google Scholar 

  45. Zhou, B.-n., Gopalan, A.S., VanMiddlesworth, F., Shieh, W.-R. and Sih, C.J. (1983) Stereochemical control of yeast reductions. 1. Asymmetric synthesis of L-camitine, J. Am. Chem. Soc. 105, 5925–5926.

    Article  CAS  Google Scholar 

  46. Aragozzini, F., Valenti, M., Santaniello, E., Ferraboschi, P. and Grisenti, P. (1992) Biocatalytic enantioselective preparations of (R)- and (S)- ethyl 4-chloro-3-hydroxybutanoate, a useful chiral synthon, Biocatalysis 5, 325–332.

    Article  CAS  Google Scholar 

  47. Manzocchi, A., Fiecchi, A. and Santaniello, E. (1987) Stereochemically controlled bakers’-yeastmediated reductions: synthesis of (S)-(+)-1,2-propanediol and (S)-(—)-1,3-butanediol, 1-benzyl ethers, Synthesis, 1007–1009.

    Google Scholar 

  48. Manzocchi, A., Fiecchi, A. and Santaniello, E. (1988) Stereochemical control of bakers’ yeast mediated reduction of a protected 2-hydroxy ketone, J. Org . Chem. 53, 4405–4407.

    Article  CAS  Google Scholar 

  49. Ferraboschi, P., Grisenti, P., Manzocchi, A. and Santaniello, E. (1994) Baker’s yeast-mediated reduction of a-hydroxy ketones and derivatives: the steric course of the biotransformation, Tetrahedron 35,10539–10548.

    Article  Google Scholar 

  50. Utaka, M., Ito, H., Mizumoto, T. and Tsuboi, S. (1995) Regio-and enantioselective synthesis of (S)-1-acetoxy-2-hydroxy-4-alkanones by use of bakers’ yeast reduction of 1-acetoxy-2,4-alkanediones, Tetrahedron: Asymmetry 6, 685–686.

    Article  CAS  Google Scholar 

  51. Egri, G., Kolbert, A., Bàlint, J., Fogassy, E., Novàk, L. and Poppe, L. (1998) Baker’s yeast mediated stereoselective biotransformation of 1-acexy-3- aryloxypropan-2-ones, ibid. 9,271–283.

    CAS  Google Scholar 

  52. Dumas, M. (1874) Recherches sur la fermentation alcoolique Ann. Chim. Phys. 3, 59–108.

    Google Scholar 

  53. Neuberg, C. and Nord, F. F. (1914) Phytochemische Bildung von Äthylmercaptan, Chem. Ber. 47, 2264–2271.

    Article  CAS  Google Scholar 

  54. Nielsen, J. K. and Madsen, J. 0. (1994) Stereoselective reduction of thiocarbonyl compounds with baker’s yeast, Tetrahedron: Asymmetry 5, 403–410.

    Article  CAS  Google Scholar 

  55. Abo, M., Okubo, A. and Yamazaki, S. (1997) Preparative asymmetric deoxygenation of alkyl aryl sulfoxides by Rhodobacter sphaeroides f.sp. denitrificansTetrahedron: Asymmetry 8, 345–348.

    Article  CAS  Google Scholar 

  56. Hanlon, S. P., Graham, D. L, Hogan, P. J., Holt, R. A., Reeve, C. V., Shaw, A. L., McEwan, A. G. (1998) Asymmetric reduction of racemic sulfoxides by dimethyl sulfoxide reductases from Rhodobacter capsulatusEscherichia coli and Proteus species, Microbiology 144 2247–2253.

    Article  CAS  Google Scholar 

  57. Baruah, M., Boruah, A., Prajapati, D. and Sandhu, J.S. (1996) Bakers’ yeast mediated chemoselective reduction of azidoarenes, Synlett 1193–1194.

    Google Scholar 

  58. Besse, P., Veschambre, H., Chênevert, R., Dickman, M. (1994) Chemoenzymatic synthesis of chiral 0azidoalcohols. Application to the preparation of chiral aziridines and aminoalcohols, Tetrahedron: Asymmetry 5, 1727–1744.

    Article  Google Scholar 

  59. Kamal, A., Damayanthi, Y., Reddy, B.S.N., Lakminarayana, B. and Reddy, B.S.P. (1997) Novel biocatalytic reduction of aryl azides: chemoenzymatic synthesis of pyrrolo[2,1-c][1,4]benzodiazepine antibiotics, Chem. Commun., 1015–1516.

    Google Scholar 

  60. Kamal, A., Laxminarayana, B. and Gayarti,N.L. (1997) Stereo and chemoselective enzymatic reduction of azido functionality: synthesis of 4-ß-aminopodophyllotoxin congeners by baker’s yeast, Tetrahedron Lett. 38 6871–6874.

    Article  CAS  Google Scholar 

  61. Neuberg, C. and Welde, E. (1914) Phytochemical reductions. II. Transformation of aliphatic nitro compounds into amino compounds, Biochem. Z. 60 470–476.

    Google Scholar 

  62. Takeshita, M., Yoshida, S., Kiya, R., Higuchi, N. and Kobayashi, Y. (1989) Reduction of aromatic nitro compounds with baker’s yeast, Chem. Pharm. Bull. 37 615–617.

    Article  CAS  Google Scholar 

  63. Blackie, J.A., Turner, N.J. and Wells, A.S. (1997) Concerning the baker’s yeast (Saccharomyces cerevisiae) mediated reduction of nitroarenes and other N-O containing functional groups, Tetrahedron Lett. 38 3043–3046

    Article  CAS  Google Scholar 

  64. Easton, C.J., Huges, M.M., Tiekink, E.R.T., Savage, G.P. and Simpson, G.W. (1995) Aryl nitrile oxide cycloaddition reactions in the presence of baker’s yeast and a-cyclodextrin, Tetrahedron Lett. 36 629–632.

    Article  CAS  Google Scholar 

  65. Davey, C.L., Powell, L.W., Turner, N.J. and Wells, A. (1994) Regioselective reduction of substituted dinitroarenes using baker’s yeastTetrahedron Lett. 35 7867–7870.

    CAS  Google Scholar 

  66. Spain, J.C. (1995) Biodegradation of nitroaromatic compounds, Ann. Rev. Microbiol. 49 523–555.

    Article  CAS  Google Scholar 

  67. Kalafut, T., Wales, M.E., Raspogi, V.K., Naumova, R.P., Zaripova, S.K. and Wild, J.R. (1998) Biotranformation patterns of 2,4,6-trinitrotoluene by aerobic bacteriaCurr. Microbiol. 36 45–54.

    Article  CAS  Google Scholar 

  68. Navarro-Ocaña, A., Jim nez-Estrada, M., Gonzàlez-Paredes, M.B. and Bàrzana, E. (1996) Synthesis of substituted isoxazoles from (Z)-3-alkyl-3-nitro-2-phenylpropenenitriles using baker’s yeast, Synlett 695–696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santaniello, E., Ferraboschi, P., Manzocchi, A. (2000). Recent Advances on Bioreductions Mediated by Baker’s Yeast and Other Microorganisms. In: Zwanenburg, B., Mikołajczyk, M., Kiełbasiński, P. (eds) Enzymes in Action. NATO Science Partnership Sub-Series: 1:, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0924-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0924-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6696-6

  • Online ISBN: 978-94-010-0924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics