Molecular Basis for Empirical Rules that Predict the Stereoselectivity of Hydrolases

  • Alexandra N. E. Weissfloch
  • Romas J. Kazlauskas
Part of the NATO Science Partnership Sub-Series: 1: book series (ASDT, volume 33)


Hydrolases are the most widely used enzymes for organic synthesis, both in academic laboratories and in commercial production. Most researchers focus on a few well-studied lipases and proteases. To predict the stereoselectivity of these ‘work horse’ hydrolases, researchers developed empirical rules or models. These empirical rules describe the shape and other features of either a good substrate (substrate model) or of the binding site (active site model). Researchers use these rules to design new syntheses using hydrolases. Recently, x-ray crystallographers have solved the three-dimensional structures of all the workhorse lipases, but these structures are too complex to use directly in the organic synthesis design. However, by combining the empirical rules with x-ray structures, one obtains a powerful and useful tool. The empirical rules identify the most important features of the substrate binding site (usually its size and shape) and thus simplify interpretation of the x-ray structures. On the other hand, the x-ray structures provide a molecular basis for the validity of the rules, add molecular details to the rules that explain puzzling features. This review summarizes recent efforts to combine both empirical rules and three-dimensional structures to rationally-design new applications of hydrolases in organic synthesis.


Primary Alcohol Secondary Alcohol Catalytic Triad Hydrophobic Pocket Empirical Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example, Bomscheuer, U.T. and Kazlauskas, R.J. (1999) Hydrolases in Organic Synthesis. Regio-and Stereoselective Biotransformations, Wiley-VCH, Weinheim.Google Scholar
  2. 2.
    An alternative empirical approach ¡ª screening hydrolases ¡ª is also useful. For example, see Janes, L.E., Cimpoia, A., and Kazlauskas, R.J. (1999), Protease-mediated separation of cis and trans diastereomers of 2-(R,S)-benzyloxymethyl-4-(S)-carboxylic acid-1,3-dioxolane methyl ester: intermediates for the synthesis of dioxolane nucleosides, J. Org . Chem. 64, in press.Google Scholar
  3. 3.
    Naemura, K. (1994) Stereoselectivity of enzymatic hydrolyses and acylations, J. Synth. Org . Chem. Jpn. 52, 49–58. (in Japanese)Google Scholar
  4. 4.
    is, D.L. Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J., Sussman, J.L., Verschueren, K.H.G., and Goldman, A. (1992) The a/ß-hydrolase fold, Prot. Engineer. 5, 197–211.Google Scholar
  5. 5.
    Branden, C. and Tooze, J. (1991) Introduction to Protein Structure Garland Publishing, New York, Chapter 15.Google Scholar
  6. 6a.
    Kazlauskas, R.J., Weissfloch, A.N.E., Rappaport, A.T., and Cuccia, L.A. (1991) A rule to predict which enantiomer of a secondary acohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa, J. Org . Chem. 56, 2656–2665.CrossRefGoogle Scholar
  7. 6b.
    Burgess, K. and Jennings, L.D. (1991) Enantioselective esterifications of unsaturated alcohols mediated by a lipase prepared from Pseudomonas sp, J. Am. Chem. Soc. 113, 6129–6139CrossRefGoogle Scholar
  8. 6c.
    Naemura, K., Ida, H., and Fukuda, R. (1993) Lipase YS-catalyzed enantioselective transesterification of alcohols of bicarbocyclic compounds, Bull. Chem. Soc. Jpn. 66, 573–577.CrossRefGoogle Scholar
  9. 6d.
    Kim, M.J. and Cho, H. (1992) Pseudomonas lipases as catalysts in organic synthesis: specificity of lipoprotein lipase, J. Chem. Soc.Chem. Commun. 1411–1413.Google Scholar
  10. 6e.
    .Roberts, S. M. (1989) Use of enzymes as catalysts to promote key transformations in organic synthesis, Philos. Trans. R. Soc. London B 324, 577–587.CrossRefGoogle Scholar
  11. 6f.
    Johnson, C.R.and Sakaguchi, H. (1992) Enantioselective transesterifications using immobilized, recombinant Candida antarctica lipase B: resolution of 2-iodo-2-cycloalken-1- ols, Synlett 813–816.Google Scholar
  12. 6g.
    Janssen, A.J.M., Klunder, A.J.H., and Zwanenburg, B. (1991) Resolution of secondary alcohols by enzyme-catalyzed transeserification in alkyl carboxylates as the solvent, Tetrahedron 47 7645–7662.CrossRefGoogle Scholar
  13. 7.
    Review: Kazlauskas, R.J. and Weissfloch, A.N.E. (1997) A structure-based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines, J. Mol. Catal. B Enz. 3 65–72.CrossRefGoogle Scholar
  14. 8a.
    Examples: Scilimati, A., Ngooi, T.K., and Sih, C.J. (1988) Biocatalytic resolution of (¡À)hydroxyalkanoic esters. A strategy for enhancing the enantiomeric specificity of lipase-catalyzed ester hydrolysis, Tetrahedron Lett. 29 4927–4930CrossRefGoogle Scholar
  15. 8b.
    Johnson, C.R., Golebiowski, A., McGill, T.K., and Steensma, D.H. (1991) Enantioselective synthesis of 6-cycloheptene-1,3,5-triol derivatives by enzymatic asymmetrization, Tetrahedron Lett. 32 2597–2600CrossRefGoogle Scholar
  16. 8c.
    Kim, M.J. and Choi, Y.K. (1992) Lipase-catalyzed enantioselective transesterification of 0-trityl 1,2-diols. Practical synthesis of (R)tritylglycidol, J. Org . Chem. 57, 1605–1607CrossRefGoogle Scholar
  17. 8d.
    Gupta, A.K. and Kazlauskas, R.J. (1993) Substrate modification to increase the enantioselectivity of hydrolases. A route to optically-active cyclic allylic alcohols, Tetrahedron: Asymmetry 4, 879–888CrossRefGoogle Scholar
  18. 8e.
    Adam, W., Mock-Knoblauch, C. and Saha-Möller, C.R. (1997) Kinetic resolution of hydroxy vinylsilanes by lipase-catalyzed enantioselective acetylation, Tetrahedron: Asymmetry 8 1441–1444.CrossRefGoogle Scholar
  19. 9.
    Shimizu, M., Kawanami, H., and Fujisawa, T. (1992) A lipase mediated asymmetric hydrolysis of 3acyloxy-l-octynes and 3-(E)-acyloxy-l-octenes, Chem. Lett. 107–110.Google Scholar
  20. 10.
    Rotticci, D., Orrenius, C., Hult, K., and Norin, T. (1997) Enantiomerically enriched bifunctional sec-alcohols prepared by Candida antarctica lipase B catalysis. Evidence of non-steric interactions, Tetrahedron: Asymmetry 8 359–362.CrossRefGoogle Scholar
  21. 11.
    Theil, F., Lemke, K., Ballschuh, S., Kunath, A., and Schick, H. (1995) Lipase-catalysed resolution of 3-(aryloxy)-1,2-propanediol derivatives — towards an improved active site model of Pseudomonas cepacia lipase (Amano PS),Tetrahedron: Asymmetry 6 1323–1344.CrossRefGoogle Scholar
  22. 12.
    Oberhauser, T., Faber, K., and Griengl, H. (1989) A substrate model for the enzymic resolution of esters of bicyclic alcohols by Candida cylindracea lipase, Tetrahedron 45 1679–1682.CrossRefGoogle Scholar
  23. 13.
    Faber, K., Griengl, H., Hoenig, H., and Zuegg, J. (1994) On the prediction of the enantioselectivity of Candida rugosa lipase by comparative molecular field analysis, Biocatalysis 9 227–239.CrossRefGoogle Scholar
  24. 14.
    Exl, C., Hoenig, H., Renner, G., Rogi-Kohlenprath, R., Seebauer, V., and Seufer-Wasserthal, P. (1992) How large are the active sites of the lipases from Candida rugosa and from Pseudomonas cepacia?, Tetrahedron: Asymmetry 3 1391–1394.CrossRefGoogle Scholar
  25. 15.
    Burgess, K., and Jennings, L.D. (1991) Enantioselective esterifications of unsaturated alcohols mediated by a lipase prepared from Pseudomonas sp, J. Am. Chem. Soc. 113 6129–6139.CrossRefGoogle Scholar
  26. 16.
    Bomscheuer, U., Herar, A., Kreye, L., Wendel, V., Capewell, A., Meyer, H.H., Scheper, T., and Kolisis, F.N. (1993) Factors affecting the lipase catalyzed transesterification reactions of 3-hydroxy esters in organic solvents, Tetrahedron: Asymmetry 4 1007–1016.CrossRefGoogle Scholar
  27. 17.
    Naemura, K., Fukuda, R., Murata, M., Konishi,M., Hirose, K., and Tobe, Y. (1995) Lipase-catalyzed enantioselective acylation of alcohols: a predictive active site model for lipase YS to identify which enantiomer of an alcohol reacts faster in this acylation, Tetrahedron: Asymmetry 6 2385–2394.CrossRefGoogle Scholar
  28. 18.
    . Naemura, K., Murata, M. Tanaka, R., Yano, M., Hirose, K., and Tobe, Y. (1996) Enantioselective acylation of alcohols catalyzed by lipase QL from Alcaligenes sp.: a predictive active site model for lipase QL to identify the faster reacting enantiomer of an alcohol in this acylation, Tetrahedron:Asymmetry 7, 1581–1584.CrossRefGoogle Scholar
  29. 19.
    Lemke, K., Lemke, M., and Theil, F. (1997) A three-dimensional predictive active site model for lipase from Pseudomonas cepacia, J. Org . Chem. 62 6268–6273.CrossRefGoogle Scholar
  30. 20.
    Grabuleda, X., Jaime, C., and Guerrero, A. (1997) Estimation of the lipase PS (Pseudomonas cepacia) active site dimensions based on molecular mechanics calculations, Tetrahedron: Asymmetry 8 3675–3683.CrossRefGoogle Scholar
  31. 21.
    NaemuraK. Takahashi, N., IdaH. and Tanaka, S. (1991) Pig liver esterase-catalyzed hydrolyses of racemic diacetates of bicyclic compounds and interpretation of the enantiomeric specificity of PLE, Chem. Lett. 6576–60.Google Scholar
  32. 22.
    Cygler, M., Grochulski, P., Kazlauskas, R.J., Schrag, J.D., Bouthillier, F., Rubin, B., Serreqi, A.N., and Gupta, A.K. (1994) Molecular basis for the chiral preference of lipases, J. Am. Chem. Soc. 116 3180–3186.CrossRefGoogle Scholar
  33. 23.
    Sayle, R.A., and Milner-White, E.J. (1995) RASMOL: biomolecular graphics for all, Trends Biochem. Sci. 20 374–376.CrossRefGoogle Scholar
  34. 24a.
    Wang, X.Q., Wang, C.S., Tang, J. Dyda, F., and Zhang, X.J.C. (1997) The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism, Structure, 5, 1209–1218;CrossRefGoogle Scholar
  35. 24b.
    For another proposal see: Chen, J.C.H., Miercke, L. J. W., Krucinski, J., Starr, J. R., Saenz, G., Wang, X.B., Spilburg, C.A., Lange, L.G., Ellsworth, J.L., and Stroud, R.M. (1998) Structure of bovine pancreatic cholesterol esterase at 1.6A: novel structural features involved in lipase activation,Biochemistry 37 5107–5117.Google Scholar
  36. 25.
    Grochulski, P., Li, Y., Schrag, J.D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., and Cygler, M. (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem.268 12843–12847.Google Scholar
  37. 26.
    Schrag, J.D. Li, Y.G., Cygler, M., Lang, D.M., Burgdorf, T., Hecht, H.J., Schmid, R. Schomburg, D., Rydel, T.J., Oliver, J.D. Strickland, L.C., Dunaway, C.M., Larson, S.B., Day, J., and McPherson, A. (1997) The open conformation of a Pseudomonas lipase, Structure 5 187–202.CrossRefGoogle Scholar
  38. 27.
    Uppenberg, J., Öhmer, N., Norin, M., Hult, K., Patkar, S., Waagen V., Anthonsen, T., and Jones, T.A. (1995) Crystallographic and molecular modelling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols, Biochemistry 34 16838–16851.CrossRefGoogle Scholar
  39. 28.
    Zuegg, J., Hönig, H. Schrag, J.D., and Cygler, M. (1997) Selectivity of lipases: conformational analysis of suggested intermediates in ester hydrolysis of chiral primary and secondary alcohols, J. Mol. Catal. B Enzym. 3 83–98.CrossRefGoogle Scholar
  40. 29.
    Orrenius, C., Hæffner, F., Rotticci, D., Ohmer, N., Norin, T., and Hult, K. (1998) Chiral recognition of alcohol enantiomers in acyl transfer reactions catalysed by Candida antarctica lipase B, Biocatal. Biotransform. 16 1–15.CrossRefGoogle Scholar
  41. 30.
    Rotticci, D., Heffner, F., Orrenius, C., Norin, T., and Hult, K. (1998) Molecular recognition of sec-alcohol enantiomers by Candida antarctica lipase B, J. Mol. Catal. B Enzym. 5, 267–272.CrossRefGoogle Scholar
  42. 31.
    Haeffner F., Norin T., and Hult K. (1998) Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions, Biophys. J. 74 1251–1262.CrossRefGoogle Scholar
  43. 32.
    Nakamura, K., Kawasaki, M., and Ohno, A. (1996) Lipase-catalyzed transesterification of aryl-substituted alkanols in an organic solvent, Bull. Chem. Soc. Jpn. 69 1079–1085.CrossRefGoogle Scholar
  44. 33.
    Nishizawa K., Ohgami Y., Matsuo N., Kisida H., and Hirohara H. (1997) Studies on hydrolysis of chiral, achiral and racemic alcohol esters with Pseudomonas cepacia lipase: mechanism of stereospecificity of the enzyme, J. Chem. Soc., Perkin Trans. 2, 1293–1298.CrossRefGoogle Scholar
  45. 34.
    Ema, T., Kobayashi, J., Maeno, S., Sakai, T., and Utaka, M. (1998) Origin of the enantioselectivity of lipases explained by a stereo-sensing mechanism operative at the transition state, Bull. Chem. Soc. Jpn. 71 443–453.CrossRefGoogle Scholar
  46. 35.
    Kazlauskas, R. J., and Weissfloch, A.N.E. (1997) A structure-based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines, J. Mol. Catal. B Enz. 3, 65–72.CrossRefGoogle Scholar
  47. 36.
    Colombo, G., Ottolina, G., Carrea, G., Bernardi, A., and Scolastico, C. (1998) Application of structure-based thermodynamic calculations to the rationalization of the enantioselectivity of subtilisin in organic solvents, Tetrahedron: Asymmetry 9 1205–1214.CrossRefGoogle Scholar
  48. 37.
    Neidhart, D.J., and Petsko, G.A. (1988) The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution, Prot. Eng. 2, 271–276.CrossRefGoogle Scholar
  49. 38.
    Weissfloch, A.N.E. and Kazlauskas, R.J. (1995) Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols, J. Org . Chem. 60 6959–6969.CrossRefGoogle Scholar
  50. 39.
    Tuomi, W.V. and Kazlauskas, R.J. (1999) Molecular basis for enantioselectivity of lipase from Pseudomonas cepacia toward primary alcohols. Modeling, kinetics and chemical modification of Tyr29 to increase or decrease enantioselectivity, J. Org . Chem. 64 2638–2647.CrossRefGoogle Scholar
  51. 40.
    Lang, D.A., Mannesse, M.L.M., De Haas, G.H., Verheij, H.M. and Dijkstra, B.W. (1998) Structural basis of the chiral selectivity of Pseudomonas cepacia lipase, Eur. J. Biochem. 254 333–340.Google Scholar
  52. 41a.
    Ahmed, S.N., Kazlauskas, R.J. Morinville, A.H., Grochulski, P., Schrag, J.D., and Cygler, M. (1994) Enantioselectivity of Candida rugosa lipase toward carboxylic acids: a predictive rule from substrate mapping and X-ray crystallography, Biocatalysis 9 209–225CrossRefGoogle Scholar
  53. 41b.
    Franssen, M.C.R., Jongejan, H. Kooijman, H. Spek, A.L., Camacho Mondril, N.L.F.L., Boavida dos Santos, P.M.A.C., and de Groot, A. (1996) Resolution of a tetrandrofuran ester by Candida rugosa lipase (CRL) and an examination of CRL’s stereochemical preference in organic media, Tetrahedron: Asymmetry 7 497–510.CrossRefGoogle Scholar
  54. 42a.
    Holmquist, M. Haeffner, F., Norin, T., and Hult, K. (1996) A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols, Prot. Sci. 5 83–88;CrossRefGoogle Scholar
  55. 42b.
    Berglund, P., Holmquist, M., and Hult, K. (1998), Reversed enantiopreference of Candida rugosa lipase supports different modes of binding enantiomers of a chiral acyl donor, J. Mol. Catal. B Enzym. 5 283–287;CrossRefGoogle Scholar
  56. 42c.
    . Botta, M., Cernia, E., Corelli, F., Manetti, F., and Soro, S. (1997) Probing the substrate specificity for lipases. 2. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases, Biochim. Biophys. Acta 1337 302–310.CrossRefGoogle Scholar
  57. 43.
    Holmquist, M. and Berglund, P. (1999) Creation of a synthetically useful lipase with higher than wild-type enantioselectivity and maintained catalytic activity, Org. Lett. 1 763–765.CrossRefGoogle Scholar
  58. 44.
    Mohr, P. Waespe-Sarcevic, N., Tamm, C., Gawronska, K., and Gawronski, J. K. (1983), A study of stereoselective hydrolysis of symmetrical diesters with pig liver esterase, Helv. Chim. Acta 66 2501–2511.Google Scholar
  59. 45a.
    Toone, El., Werth, M.J., and Jones, J.B. (1990) Active site model for interpreting and predicting the specificity of pig liver esterase, J. Am. Chem. Soc. 112 4946–4952;CrossRefGoogle Scholar
  60. 45b.
    Provencher, L. and Jones, J.B. (1994) A concluding specification of the dimensions of the active site model of pig liver esterase, J. Org . Chem. 59 2729–2732.CrossRefGoogle Scholar
  61. 46.
    Cohen, S. G. (1969), On the active site and specificity of a-chymotrypsin, Trans. N. Y. Acad. Sci. 31 705–719.CrossRefGoogle Scholar
  62. 47.
    Tulinsky, A. and Blevins, R. A. (1987) Structure of a tetrahedral transition state complex of a-chymotrypsin at 1.8-A resolution, J. Biol. Chem. 262 7737–7743.Google Scholar
  63. 48.
    Jones, J. B. and Beck, J. F. (1976) Asymmetric syntheses and resolutions using enzymes, In Applications of Biochemical Systems in Organic Chemistry, Jones, J. B., Sih, C. J., Perlman, D., Eds. Techniques in Chemistry Series Vol. X, Wiley: New York, pp 107–401.Google Scholar
  64. 49.
    Moree, W.J., Sears, P., Kawashiro, K., Witte, K., and Wong, C.H. (1997) Exploitation of subtilisin BPN’ as catalyst for the synthesis of peptides containing noncoded amino acids, peptide mimetics and peptide conjugates, J. Am. Chem. Soc. 119 3942–3947.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Alexandra N. E. Weissfloch
    • 1
  • Romas J. Kazlauskas
    • 1
  1. 1.Department of ChemistryMcGill UniversityMontréalCanada

Personalised recommendations