Skip to main content

Biocatalytic Synthesis of Alkaloids and Carbohydrates: An Update

  • Chapter
Enzymes in Action

Part of the book series: NATO Science Partnership Sub-Series: 1: ((ASDT,volume 33))

  • 320 Accesses

Abstract

Biocatalysis and its applications to synthesis has risen to prominence in recent years in both academic and industrial domains Several recent reviews highlight the applications of enzymes to the production of enantiomerically pure synthons for manufacturing of fine chemicals.[1-5] Various lipases are now commonly used in organic synthesis for desymmetrization of meso compounds. On the other hand, oxidoreductases have not been used so extensively in organic synthesis because there are difficulties in handling such enzymes as isolated entities and due to the necessity of recycling cofactors. For this reason, whole-cell fermentation is the method of choice in the application of oxidoreductases to organic synthesis. Both bacterial cells (E. coli recombinant organisms) and yeast are now used for such reactions as epoxidation, diol formation, and Baeyer-Villiger oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faber, K. (1997) Biotransformations of non-Natural Compounds: State of the Art and Future Development,Pure Appl. Chem.69 1613–1632

    Article  CAS  Google Scholar 

  2. Roberts, S. M. J. (1998) Preparative Biotransformations: The Employment of Enzymes and Whole-Cells in Synthetic Organic Chemistry, J. Chem. Soc. Perkin Trans.1 157–169.

    Article  Google Scholar 

  3. Stewart, J.D. (1998) Baker’s Yeast Reduction in Asymmetric Synthesis,Current Opinion in Drug Discovery and Development1278–289.

    CAS  Google Scholar 

  4. Schoffers, E., Golebiowski, A., and Johnson, C. R. (1996) Enantioselective Synthesis Through Enzymatic Asymmetrization,Tetrahedron52 3769–3826.

    Article  CAS  Google Scholar 

  5. Hudlicky, T.;Gonzalez, D. and Gibson, D. T. (1999) Enzymatic Dihydroxylation of Aromatics in Enantioselective Synthesis: Expanding Asymmetric Methodology.AldrichimicaActa3235–62.

    CAS  Google Scholar 

  6. This term was coined by Martin Banwell (Australian National University, Canberra) at the 8th Symposium on the Latest Trends in Organic Synthesis, Gainesville, October, 1998.

    Google Scholar 

  7. Hudlicky, T. (1996) Design Constraints in Practical Syntheses of Complex Molecules: Current Status, Case Studies with Carbohydrates and Alkaloids, and Future Perspective.Chem. Rev.96330.

    Google Scholar 

  8. Hudlicky, T.; Luna, H.; Barbieri, G.; and Kwart, L. D. (1988) Enantioselective Synthesis Through Microbial Oxidation of Arenes. 1. Efficient Preparation of Terpene and Prostanoid Synthons,J. Am. Chem. Soc. 110, 4735–4741.

    Article  CAS  Google Scholar 

  9. Johnson, C.R.;and Penning, T. D. (1988) Triply Convergent Synthesis of (-)-Prostaglandin-E2 Methyl Ester,J. Am. Chem. Soc.110, 4726–4735.

    Article  CAS  Google Scholar 

  10. Tian, X.R.;Hudlicky, T.; and Konigsberger, K. (1995) First Enantioselective Total Synthesis of (+)Pancratistatin: An Unusual Set of Problems,J. Am. Chem. Soc.17, 3643–3644.

    Article  Google Scholar 

  11. Hudlicky, T.; Tian, X.R.;Konigsberger, K.; Maurya,R.;Rouden, J.;and Fan, B. (1996) Toluene Dioxygenase-Mediated cis-Dihydroxylation of Aromatics in Enantioselective Synthesis. Asymmetric Total Syntheses of Pancratistatin and 7-Deoxypancratistatin, Promising Antitumor Agents,J. Am. Chem. Soc.118, 10752–10765.

    Article  CAS  Google Scholar 

  12. Butora, G.; Hudlicky, T.; Feamley, S. P.; Gum, A. G.; Stabile, M. R.; and Abboud, K. (1996) Chemoenzymic Synthesis of the Morphine Skeleton via Radical Cyclization and a C10–C11 closure,Tetrahedron Lett.37, 8155–8158.

    Article  CAS  Google Scholar 

  13. Butora, G.; Hudlicky, T.; Feamley, S. P.; Stabile, M. R.; Gum, A. G.; and Gonzalez, D. (1998)Toward a Practical Synthesis of Morphine. The First Several Generations of a Radical Cyclization Approach,Synthesis, 665–681.

    Google Scholar 

  14. Bottari P.; Endoma M. A. A.; Hudlicky T.; Ghiviriga I.; and Abboud K. A. (1999) Intramolecular NAcyliminium Ion-olefin Cyclization in the Synthesis of Optically Pure Isoquinoline Derivatives: Control of Stereochemistry and Application to Synthesis of Morphine Alkaloids. Collect. Czech. Chem. Commun. 64, 203–216.

    Article  CAS  Google Scholar 

  15. Butora G.; Gum A. G.; Hudlicky T.; and Abboud K. A. (1998) Advanced Intramolecular Diels-Alder Study Toward the Synthesis of (-)-Morphine: Structure Correction of a Previously Reported DielsAlder Product, Synthesis, 275–278.

    Google Scholar 

  16. Gonzalez, D.; Schapiro, V.; Seoane, G.; Hudlicky, T.; and Abboud, K. (1997) Chemoenzymic Synthesis of Unnatural Amino Acids via Modified Claisen Rearrangement of Glycine Enolates. Approach to Morphine Synthesis, J.Org.Chem. 62, 1194–1195.

    CAS  Google Scholar 

  17. Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; and Thorpe, A. J. (1996) Modern Methods of Monosaccharide Synthesis from non-Carbohydrate Sources, Chem. Rev. 96, 1195–1220.

    Article  CAS  Google Scholar 

  18. Hudlicky, T.; Abboud, K. A.; Entwistle, D. A.; Fan, R.; Maurya, R.; Thorpe, A. J.; Bolonick, J.; and Myers, B. (1996) Toluene-Dioxygenase-mediated cis-Dihydroxylation of Aromatics in Enantioselective Synthesis. Iterative Glycoconjugate Coupling Strategy and Combinatorial Design for the Synthesis of Oligomers of nor-Saccharides, Inositols, and Pseudosugars with Interesting Molecular Properties, Synthesis, 897–911.

    Google Scholar 

  19. Desjardins, M.; Lallemand, M.; Freeman, S.; Hudlicky, T.; and Abboud, K. A. (1999) Synthesis and Biological Evaluation of Conduritol and Conduramine Analogs,J. Chem. Soc.Perkin Trans.1, 621–628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hudlicky, T. (2000). Biocatalytic Synthesis of Alkaloids and Carbohydrates: An Update. In: Zwanenburg, B., Mikołajczyk, M., Kiełbasiński, P. (eds) Enzymes in Action. NATO Science Partnership Sub-Series: 1:, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0924-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0924-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6696-6

  • Online ISBN: 978-94-010-0924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics