Cellular Automata and Artificial Life

— Computation and Life in Reversible Cellular Automata —
  • Kenichi Morita
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 6)

Abstract

In this paper, we investigate and discuss the problem of how the abilities of computing and self-reproduction can be realized in a “reversible” environment, especially in reversible cellular automata (RCA). An RCA is a “backward deterministic” CA in which every configuration of the cellular space has at most one predecessor. Such systems have a close connection to physical reversibility, and have been known to play an important role in the problem of inevitable power dissipation in computing systems. This problem will become much more important when one tries to construct nano-scaled functional objects based on microscopic physical law. We first discuss how computation-universality can be obtained under the reversibility constraint, and show our models of one- and two-dimensional universal RCAs. Next, we explain a self-reproducing model on a two-dimensional RCA and its mechanism. Our new attempt to create a three-dimensional self-reproducing RCA is also stated.

Keywords

Hexagonal Assure Dition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M. (1994) Molecular Computation of Solutions to Combinatorial Problems, Science, 226, pp. 1021–1024.CrossRefGoogle Scholar
  2. 2.
    Albert, J., and Culik II, K. (1987) A Simple Universal Cellular Automaton and its One-Way and Totalistic Version, Complex Systems, 1, pp. 1–16.MathSciNetMATHGoogle Scholar
  3. 3.
    Amoroso, S. and Patt, Y.N. (1972) Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures, J. Comput. Syst. Sci., 6, pp. 448–464.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H. (1973) Logical Reversibility of Computation, IBM J. Res. Dev., 17, pp. 525–532.MATHCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H. (1982) The Thermodynamics of Computation, Int. J. Theoret. Phys., 21, pp. 905–940.CrossRefGoogle Scholar
  6. 6.
    Bennett, C.H., and Landauer, R. (1985) The Fundamental Physical Limits of Computation, Sci. Am., 253, pp. 38–46.CrossRefGoogle Scholar
  7. 7.
    Bennett, C.H. (1987) Demons, Engines and the Second Law, Sci. Am., 255, pp. 108–116.CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H. (1988) Notes on the History of Reversible Computation, IBM J. Res. Dev., 32, pp. 16–23.CrossRefGoogle Scholar
  9. 9.
    Berlekamp, E., Conway, J., and Guy, R. (1982) Winning Ways for Your Mathematical Plays, Vol.2, Academic Press, New York.MATHGoogle Scholar
  10. 10.
    Byl, J. (1989) Self-reproduction in small cellular automata, Physica D, 34, pp. 295–299.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Codd, E.F. (1968) Cellular Automata, Academic Press, New York.MATHGoogle Scholar
  12. 12.
    Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Proc. R. Soc. Lond. A, 400, pp. 97–117.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Feynman, R.P. (1982) Simulating Physics with Computers, Int. J. Theoret. Phys., 21, pp. 467–488.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Feynman, R.P. (1996) Feynman Lectures on Computation (eds. A.J.G. Hey and R. W. Allen), Perseus Books, Reading, Massachusetts.Google Scholar
  15. 15.
    Fredkin, E., and Toffoli, T. (1982) Conservative Logic, Int. J. Theoret. Phys., 21, pp. 219–253.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gardner, M. (1971) Mathematical Games: On Cellular Automata, Self-Reproduction, the Garden of Eden and the Game “Life”, Sci. Am., 224, No.2, pp. 112–117.CrossRefGoogle Scholar
  17. 17.
    Goles, E. (1992) Sand Pile Automata, Ann. Inst. Henri Poincaré, 56, pp. 75–90.MathSciNetMATHGoogle Scholar
  18. 18.
    Goles, E., and Margenstem, M. (1996) Sand Pile as a Universal Computer, Int. J. Modern Physics C, 7, pp. 113–122.MATHCrossRefGoogle Scholar
  19. 19.
    Hertling, P. (1998) Embedding Cellular Automata into Reversible Ones, Unconventional Models of Computation (eds. C.S. Claude, J. Casti, and M.J. Dinneen), Springer-Verlag, New York, pp. 243–256.Google Scholar
  20. 20.
    Hori, T., Imai, K., and Monta, K. (1998) Self-Reproduction Movies of 3D Reversible Cellular Automata, http://kelp.ke.sys.hiroshima-u.ac.jp/projects/rca/sr3d/.
  21. 21.
    Ibáñez, J., Anabitarte, D., Azpeitia, I., Barrera, O., Barrutieta, A., Blanco, H., and Echarte, F. (1995) Self-Inspection Based Reproduction in Cellular Automata, in Advances in Artificial Life (eds. F. Moran et al.), LNAI-929, Springer-Verlag, New York, pp. 564–576.CrossRefGoogle Scholar
  22. 22.
    Imai, K., and Morita, K. (1996) Firing Squad Synchronization Problem in Reversible Cellular Automata, Theoret. Comput. Sci., 165, pp. 475–482.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Imai, K., and Morita, K. (1999) A Computation-Universal Two-Dimensional 8-State Triangular Reversible Cellular Automaton, Theoret. Comput. Sci. (in press).Google Scholar
  24. 24.
    Kari, J. (1994) Reversibility and Surjectivity of Problems of Cellular Automata, J. Comput. Syst. Sci., 48, pp. 149–182.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Laing, R. (1977) Automaton Models of Reproduction by Self-Inspection, J. Theor. Biol., 66, pp. 437–456.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Landauer, R. (1961) Irreversibility and Heat Generation in the Computing Process, IBM J. Res. Dev., 5, pp. 183–191.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Langton, CG. (1984) Self-Reproduction in Cellular Automata, Physica, 10D, pp. 135–144.Google Scholar
  28. 28.
    Margolus, N. (1984) Physics-Like Model of Computation, Physica, 10D, pp. 81–95.MathSciNetGoogle Scholar
  29. 29.
    Maruoka, A. and Kimura, M. (1976) Condition for Injectivity of Global Maps for Tessellation Automata, Inf. Control, 32, pp. 158–162.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Maruoka, A. and Kimura, M. (1979) Injectivity and Surjectivity of Parallel Maps for Cellular Automata, J. Comput. Syst. Sci., 18, pp. 47–64.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Minsky, M.L. (1967) Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  32. 32.
    Moore, E.F. (1970) Machine Models of Self-Reproduction, in Essays on Cellular Automata (ed. A.W. Burks), University of Illinois Press, Urbana, pp. 187–203.Google Scholar
  33. 33.
    Monta, K., Shirasaki, A., and Gono, Y. (1989) A 1-Tape 2-Symbol Reversible Turing Machine, Trans. IEICE Japan, E-72, pp. 223–228.Google Scholar
  34. 34.
    Monta, K., and Harao, M. (1989) Computation Universality of One-Dimensional Reversible (Injective) Cellular Automata, Trans. IEICE Japan, E-72, pp. 758–762.Google Scholar
  35. 35.
    Monta, K. (1990) A Simple Construction Method of a Reversible Finite Automaton out of Fredkin Gates, and its Related Problem, Trans. IEICE Japan, E-73, pp. 978–984.Google Scholar
  36. 36.
    Monta, K., and Ueno, S. (1992) Computation-Universal Models of Two-Dimensional 16-State Reversible Cellular Automata, IEICE Trans. Inf. & Syst., E75-D, pp. 141–147.Google Scholar
  37. 37.
    Monta, K. (1992) Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata, Inform. Process. Lett., 42, pp. 325–329.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Monta, K. (1995) Reversible Simulation of One-Dimensional Irreversible Cellular Automata, Theoret. Comput. Sci., 148, pp. 157–163.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Morita, K. (1996) Universality of a Reversible Two-Counter Machine, Theoret. Comput. Sci., 168, pp. 303–320.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Morita, K., and Imai, K. (1996) Self-Reproduction in a Reversible Cellular Space, Theoret. Comput. Sci., 168, pp. 337–366. http://kepi.ke.ays.hiroshima-u.ac.jp/projects/rca/sr/ MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Morita, K., and Imai, K. (1997) A Simple Self-Reproducing Cellular Automaton with Shape-Encoding Mechanism, Artificial Life V (eds. C.G. Langton and K. Shimohara), The MIT Press, pp. 489–496.Google Scholar
  42. 42.
    Morita, K., Margenstern, M., and Imai, K. (1998) Universality of Reversible Hexagonal Cellular Automata, MFCS′98 Workshop on Frontiers between Decidability and Undecidability, Brno.Google Scholar
  43. 43.
    Morita, K., and Imai, K. (1998) Number-Conserving Reversible Cellular Automata and their Computation-Universality, MFCS′98 Workshop on Cellular Automata, Brno.Google Scholar
  44. 44.
    Myhill, J. (1970) The Converse of Moore’s Garden-of-Eden Theorem, in Essays on Cellular Automata (ed. A.W. Burks), University of Illinois Press, Urbana, pp. 204–205.Google Scholar
  45. 45.
    von Neumann, J. (1966) Theory of Self-Reproducing Automata (ed. A.W. Burks), The University of Illinois Press, Urbana.Google Scholar
  46. 46.
    Päun, Gh., Rozenberg, G., and Salomaa, A. (1998) DNA Computing, Springer-Verlag, Berlin.Google Scholar
  47. 47.
    Poundstone, W. (1985) The Recursive Universe, International Creative Management.Google Scholar
  48. 48.
    Reggia, J.A., Armentrout, S.L., Chou, H.H., and Peng, Y. (1993) Simple Systems that Exhibit Self-Directed Replication, Science, 259, pp. 1282–1287.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Richardson, D. (1972) Tessellations with Local Transformations, J. Comput. Syst. Sci., 6, pp. 373–388.MATHCrossRefGoogle Scholar
  50. 50.
    Serizawa, T. (1986) 3-State Neumann Neighbor Cellular Automata Capable of Constructing Self-Reproducing Machine, Trans. IEICE Japan, J-69, pp. 653–660.Google Scholar
  51. 51.
    Smith III, A.R. (1971) Simple Computation-Universal Cellular Spaces, J. ACM, 18, pp. 339–353.MATHCrossRefGoogle Scholar
  52. 52.
    Tempesti, G. (1995) A New Self-Reproducing Cellular Automaton Capable of Construction and Computation, in Advances in Artificial Life (eds. F. Moran et al.), LNAI-929, Springer-Verlag, New York, pp. 555–563.CrossRefGoogle Scholar
  53. 53.
    Toffoli, T. (1977) Computation and Construction Universality of Reversible Cellular Automata, J. Comput. Syst. Sci., 15, pp. 213–231.MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Toffoh, T., and Margolus, N. (1990) Invertible Cellular Automata: A Review, Phyaica D, 45, pp. 229–253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Kenichi Morita
    • 1
  1. 1.Faculty of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations