Skip to main content

Cellular Automata and Artificial Life

— Computation and Life in Reversible Cellular Automata —

  • Chapter
Complex Systems

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 6))

Abstract

In this paper, we investigate and discuss the problem of how the abilities of computing and self-reproduction can be realized in a “reversible” environment, especially in reversible cellular automata (RCA). An RCA is a “backward deterministic” CA in which every configuration of the cellular space has at most one predecessor. Such systems have a close connection to physical reversibility, and have been known to play an important role in the problem of inevitable power dissipation in computing systems. This problem will become much more important when one tries to construct nano-scaled functional objects based on microscopic physical law. We first discuss how computation-universality can be obtained under the reversibility constraint, and show our models of one- and two-dimensional universal RCAs. Next, we explain a self-reproducing model on a two-dimensional RCA and its mechanism. Our new attempt to create a three-dimensional self-reproducing RCA is also stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M. (1994) Molecular Computation of Solutions to Combinatorial Problems, Science, 226, pp. 1021–1024.

    Article  Google Scholar 

  2. Albert, J., and Culik II, K. (1987) A Simple Universal Cellular Automaton and its One-Way and Totalistic Version, Complex Systems, 1, pp. 1–16.

    MathSciNet  MATH  Google Scholar 

  3. Amoroso, S. and Patt, Y.N. (1972) Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures, J. Comput. Syst. Sci., 6, pp. 448–464.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H. (1973) Logical Reversibility of Computation, IBM J. Res. Dev., 17, pp. 525–532.

    Article  MATH  Google Scholar 

  5. Bennett, C.H. (1982) The Thermodynamics of Computation, Int. J. Theoret. Phys., 21, pp. 905–940.

    Article  Google Scholar 

  6. Bennett, C.H., and Landauer, R. (1985) The Fundamental Physical Limits of Computation, Sci. Am., 253, pp. 38–46.

    Article  Google Scholar 

  7. Bennett, C.H. (1987) Demons, Engines and the Second Law, Sci. Am., 255, pp. 108–116.

    Article  Google Scholar 

  8. Bennett, C.H. (1988) Notes on the History of Reversible Computation, IBM J. Res. Dev., 32, pp. 16–23.

    Article  Google Scholar 

  9. Berlekamp, E., Conway, J., and Guy, R. (1982) Winning Ways for Your Mathematical Plays, Vol.2, Academic Press, New York.

    MATH  Google Scholar 

  10. Byl, J. (1989) Self-reproduction in small cellular automata, Physica D, 34, pp. 295–299.

    Article  MathSciNet  MATH  Google Scholar 

  11. Codd, E.F. (1968) Cellular Automata, Academic Press, New York.

    MATH  Google Scholar 

  12. Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Proc. R. Soc. Lond. A, 400, pp. 97–117.

    Article  MathSciNet  MATH  Google Scholar 

  13. Feynman, R.P. (1982) Simulating Physics with Computers, Int. J. Theoret. Phys., 21, pp. 467–488.

    Article  MathSciNet  Google Scholar 

  14. Feynman, R.P. (1996) Feynman Lectures on Computation (eds. A.J.G. Hey and R. W. Allen), Perseus Books, Reading, Massachusetts.

    Google Scholar 

  15. Fredkin, E., and Toffoli, T. (1982) Conservative Logic, Int. J. Theoret. Phys., 21, pp. 219–253.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gardner, M. (1971) Mathematical Games: On Cellular Automata, Self-Reproduction, the Garden of Eden and the Game “Life”, Sci. Am., 224, No.2, pp. 112–117.

    Article  Google Scholar 

  17. Goles, E. (1992) Sand Pile Automata, Ann. Inst. Henri Poincaré, 56, pp. 75–90.

    MathSciNet  MATH  Google Scholar 

  18. Goles, E., and Margenstem, M. (1996) Sand Pile as a Universal Computer, Int. J. Modern Physics C, 7, pp. 113–122.

    Article  MATH  Google Scholar 

  19. Hertling, P. (1998) Embedding Cellular Automata into Reversible Ones, Unconventional Models of Computation (eds. C.S. Claude, J. Casti, and M.J. Dinneen), Springer-Verlag, New York, pp. 243–256.

    Google Scholar 

  20. Hori, T., Imai, K., and Monta, K. (1998) Self-Reproduction Movies of 3D Reversible Cellular Automata, http://kelp.ke.sys.hiroshima-u.ac.jp/projects/rca/sr3d/.

  21. Ibáñez, J., Anabitarte, D., Azpeitia, I., Barrera, O., Barrutieta, A., Blanco, H., and Echarte, F. (1995) Self-Inspection Based Reproduction in Cellular Automata, in Advances in Artificial Life (eds. F. Moran et al.), LNAI-929, Springer-Verlag, New York, pp. 564–576.

    Chapter  Google Scholar 

  22. Imai, K., and Morita, K. (1996) Firing Squad Synchronization Problem in Reversible Cellular Automata, Theoret. Comput. Sci., 165, pp. 475–482.

    Article  MathSciNet  MATH  Google Scholar 

  23. Imai, K., and Morita, K. (1999) A Computation-Universal Two-Dimensional 8-State Triangular Reversible Cellular Automaton, Theoret. Comput. Sci. (in press).

    Google Scholar 

  24. Kari, J. (1994) Reversibility and Surjectivity of Problems of Cellular Automata, J. Comput. Syst. Sci., 48, pp. 149–182.

    Article  MathSciNet  MATH  Google Scholar 

  25. Laing, R. (1977) Automaton Models of Reproduction by Self-Inspection, J. Theor. Biol., 66, pp. 437–456.

    Article  MathSciNet  Google Scholar 

  26. Landauer, R. (1961) Irreversibility and Heat Generation in the Computing Process, IBM J. Res. Dev., 5, pp. 183–191.

    Article  MathSciNet  MATH  Google Scholar 

  27. Langton, CG. (1984) Self-Reproduction in Cellular Automata, Physica, 10D, pp. 135–144.

    Google Scholar 

  28. Margolus, N. (1984) Physics-Like Model of Computation, Physica, 10D, pp. 81–95.

    MathSciNet  Google Scholar 

  29. Maruoka, A. and Kimura, M. (1976) Condition for Injectivity of Global Maps for Tessellation Automata, Inf. Control, 32, pp. 158–162.

    Article  MathSciNet  MATH  Google Scholar 

  30. Maruoka, A. and Kimura, M. (1979) Injectivity and Surjectivity of Parallel Maps for Cellular Automata, J. Comput. Syst. Sci., 18, pp. 47–64.

    Article  MathSciNet  MATH  Google Scholar 

  31. Minsky, M.L. (1967) Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  32. Moore, E.F. (1970) Machine Models of Self-Reproduction, in Essays on Cellular Automata (ed. A.W. Burks), University of Illinois Press, Urbana, pp. 187–203.

    Google Scholar 

  33. Monta, K., Shirasaki, A., and Gono, Y. (1989) A 1-Tape 2-Symbol Reversible Turing Machine, Trans. IEICE Japan, E-72, pp. 223–228.

    Google Scholar 

  34. Monta, K., and Harao, M. (1989) Computation Universality of One-Dimensional Reversible (Injective) Cellular Automata, Trans. IEICE Japan, E-72, pp. 758–762.

    Google Scholar 

  35. Monta, K. (1990) A Simple Construction Method of a Reversible Finite Automaton out of Fredkin Gates, and its Related Problem, Trans. IEICE Japan, E-73, pp. 978–984.

    Google Scholar 

  36. Monta, K., and Ueno, S. (1992) Computation-Universal Models of Two-Dimensional 16-State Reversible Cellular Automata, IEICE Trans. Inf. & Syst., E75-D, pp. 141–147.

    Google Scholar 

  37. Monta, K. (1992) Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata, Inform. Process. Lett., 42, pp. 325–329.

    Article  MathSciNet  Google Scholar 

  38. Monta, K. (1995) Reversible Simulation of One-Dimensional Irreversible Cellular Automata, Theoret. Comput. Sci., 148, pp. 157–163.

    Article  MathSciNet  Google Scholar 

  39. Morita, K. (1996) Universality of a Reversible Two-Counter Machine, Theoret. Comput. Sci., 168, pp. 303–320.

    Article  MathSciNet  MATH  Google Scholar 

  40. Morita, K., and Imai, K. (1996) Self-Reproduction in a Reversible Cellular Space, Theoret. Comput. Sci., 168, pp. 337–366. http://kepi.ke.ays.hiroshima-u.ac.jp/projects/rca/sr/

    Article  MathSciNet  MATH  Google Scholar 

  41. Morita, K., and Imai, K. (1997) A Simple Self-Reproducing Cellular Automaton with Shape-Encoding Mechanism, Artificial Life V (eds. C.G. Langton and K. Shimohara), The MIT Press, pp. 489–496.

    Google Scholar 

  42. Morita, K., Margenstern, M., and Imai, K. (1998) Universality of Reversible Hexagonal Cellular Automata, MFCS′98 Workshop on Frontiers between Decidability and Undecidability, Brno.

    Google Scholar 

  43. Morita, K., and Imai, K. (1998) Number-Conserving Reversible Cellular Automata and their Computation-Universality, MFCS′98 Workshop on Cellular Automata, Brno.

    Google Scholar 

  44. Myhill, J. (1970) The Converse of Moore’s Garden-of-Eden Theorem, in Essays on Cellular Automata (ed. A.W. Burks), University of Illinois Press, Urbana, pp. 204–205.

    Google Scholar 

  45. von Neumann, J. (1966) Theory of Self-Reproducing Automata (ed. A.W. Burks), The University of Illinois Press, Urbana.

    Google Scholar 

  46. Päun, Gh., Rozenberg, G., and Salomaa, A. (1998) DNA Computing, Springer-Verlag, Berlin.

    Google Scholar 

  47. Poundstone, W. (1985) The Recursive Universe, International Creative Management.

    Google Scholar 

  48. Reggia, J.A., Armentrout, S.L., Chou, H.H., and Peng, Y. (1993) Simple Systems that Exhibit Self-Directed Replication, Science, 259, pp. 1282–1287.

    Article  MathSciNet  MATH  Google Scholar 

  49. Richardson, D. (1972) Tessellations with Local Transformations, J. Comput. Syst. Sci., 6, pp. 373–388.

    Article  MATH  Google Scholar 

  50. Serizawa, T. (1986) 3-State Neumann Neighbor Cellular Automata Capable of Constructing Self-Reproducing Machine, Trans. IEICE Japan, J-69, pp. 653–660.

    Google Scholar 

  51. Smith III, A.R. (1971) Simple Computation-Universal Cellular Spaces, J. ACM, 18, pp. 339–353.

    Article  MATH  Google Scholar 

  52. Tempesti, G. (1995) A New Self-Reproducing Cellular Automaton Capable of Construction and Computation, in Advances in Artificial Life (eds. F. Moran et al.), LNAI-929, Springer-Verlag, New York, pp. 555–563.

    Chapter  Google Scholar 

  53. Toffoli, T. (1977) Computation and Construction Universality of Reversible Cellular Automata, J. Comput. Syst. Sci., 15, pp. 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  54. Toffoh, T., and Margolus, N. (1990) Invertible Cellular Automata: A Review, Phyaica D, 45, pp. 229–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morita, K. (2001). Cellular Automata and Artificial Life. In: Goles, E., Martínez, S. (eds) Complex Systems. Nonlinear Phenomena and Complex Systems, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0920-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0920-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3817-1

  • Online ISBN: 978-94-010-0920-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics