Skip to main content

Onset of Rigidity in Steps in Chalcogenide Glasses

The Intermediate Phase

  • Chapter
Properties and Applications of Amorphous Materials

Part of the book series: NATO Science Series ((NAII,volume 9))

Abstract

The starting point to understand the physical behavior of crystalline solids is their crystallographic structure. Near phase transitions usually a change of structure occurs, an underlying crystal symmetry is broken, and an order parameter displays a specific power-law. Such effects in oxides have a rather rich history [1]. We are also beginning to recognize that phase separation on a nanoscale in doped crystalline semiconductors and oxides apparently is not that unusual, and that such delicate aspects of structure could play a role to understand the metal insulator transition [2] in Si and Ge and possibly the origin of high-T superconductivity [3] in the oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raman, C.V. and Nedungadi, T.M.K. (1940) The cc-β transformation of quartz, Nature 145, 147–149. Then followed work of Landau, L, Cochran, W., Shirane, G., and many others on displacive phase transitions in oxides.

    Article  ADS  Google Scholar 

  2. Watanabe, M., Ootuka, Y., Itoh, K.M., Haller, E.E. (1998) Electrical properties of isotopically enriched neutron-transmutation-doped Ge-70: Ga near the metal-insulator transition, Phys. Rev. B 58, 9851–9857. See also Phillips, J.C. (1998) Broken symmetry and strangeness of the semiconductor impurity band metal-insulator transition, Proc. Nat. Acad. of Sciences 95, 7264-7269.

    ADS  Google Scholar 

  3. Phillips, J.C. (1990) States in the superconductive gap of high-Tc cuprates, Phys. Rev. B41, 8968–8973.

    ADS  Google Scholar 

  4. Boolchand, P. and Bresser W. J. (2000) The structural origin of broken chemical order in GeSe2 glass, Philos. Mag. B (in press).

    Google Scholar 

  5. Gladden, L.F. and Elliott, S.R. (1989) Computer-generated models of a-SiSe2. 1. The Algorithm, J. Non-Cryst. Solids 109, 211–222. Computer-generated models of a-SiSe2 II Structural Studies, 109, 223-236.

    Article  ADS  Google Scholar 

  6. Lathrop, D., Eckert, H., (1989) Chemical disorder in non-oxide chalcogenide glasses: site speciation in the system P-Se by magic angle spinning NMR at very high spinning speeds, J. Phys. Chem. 93, [pp895] In this paper NMR evidence for Se=P(Se 1/2)3 units in P-Se glasses is provided. Such units are not found in crystalline compounds of P with Se. Enzweiler, R.N. and Boolchand, P. (1987) GeSnSe3 glass—a novel exception to the Ioffe-Regel rule, Solid State Commun. 62 197-200. In this paper a specific molecular fragment consisting of zig-zag chains of CS Ge(Se 1/2)4 tetrahedra is found to be present in the glass but not in corresponding crystal. There are many other such examples.

    Google Scholar 

  7. Lagrange, J.L. (1788) Mecanique Analytique, Paris.

    Google Scholar 

  8. Maxwell, J.C. (1864) On the calculation of the equilibrium and stiffness of frames, Philos. Mag. 27, 294–299.

    Google Scholar 

  9. Phillips, J.C. (1979) Topology of covalent non-crystalline solids I: Short range order in chalcogenide alloys, J. Non-Cryst. Solids 34, 153–181.

    Article  ADS  Google Scholar 

  10. Thorpe, M.F. (1983) Continuous deformations in random networks, 7. Non-Cryst. Solids 57, 355–370.

    Article  ADS  Google Scholar 

  11. Thorpe, M.F., Jacobs, D.J., Djordjevic, B.R. (2000) The structure and rigidity of network glasses, in P. Boolchand (ed), Insulating and Semiconducting Glasses, World Scientific Press, Singapore, pp. 95–145.

    Chapter  Google Scholar 

  12. Boolchand, P. and Thorpe, M.F. (1994) Glass-forming tendency, percolation of rigidity, and one-fold-coordinated atoms in covalent networks, Phys. Rev. B 50, 10366–10368.

    Article  ADS  Google Scholar 

  13. Zhang, M. and Boolchand, P. (1994) The central role of broken bond-bending constraints in promoting glass-formation in the oxides, Science 266, 1355–1357.

    Article  ADS  Google Scholar 

  14. Boolchand, P., Zhang, M. and Goodman, B. (1996) Influence of one-fold-coordinated atoms on mechanical properties of covalent networks, Phys. Rev. B 53, 11488–11494.

    Article  ADS  Google Scholar 

  15. Mitkova, M. and Boolchand, P. (1998) Microscopic origin of the glass forming tendency in chalcohalides and constraint theory, J. Non-Cryst. Solids 240, 1–21.

    Article  ADS  Google Scholar 

  16. Boolchand, P., Zhang, M., Goodman, B. (1997) One-fold coordinated atoms, constraint theory and nanoindentation hardness, in M.F. Thorpe and M. Mitkova (eds.) Amorphous Insulators and Semiconductors, Kluwer Academic Publishers, Dortrecht, pp. 339–348.

    Google Scholar 

  17. Feng, X.W., Bresser, W.J. and Boolchand, P. (1997) Direct evidence for stiffness threshold in chalcogenide glasses, Phys. Rev. Lett. 78, 4422–4425.

    Article  ADS  Google Scholar 

  18. Kerner R., and Phillips, J.C. (2000) Quantitative principles of silicate glass chemistry (unpublished).

    Google Scholar 

  19. Stevens, M, Grothaus J., Boolchand, P. and Hernandez, J.G. (1983) Universal structural phase-transition in network glasses, Solid State Comm. 47, 199–202.

    Article  ADS  Google Scholar 

  20. Phillips, J.C. (1983) Realization of a Zachariasen glass, Solid State Comm. 47, 203–206.

    Article  ADS  Google Scholar 

  21. Boolchand, P. (2000) Vibrational excitation in glasses: Rigidity transition and Lamb-Mössbauer factors, in P. Boolchand (ed.) Insulating and Semiconducting Glasses, World Scientific Press, Singapore, pp. 369–414.

    Chapter  Google Scholar 

  22. Thorpe, MR, Jacobs, DJ., Chubynsky, M.V. and Phillips, J.C. (2000) Self-organization in network glasses, J. Non-Cryst. Solids, 266-269, 859–866.

    Article  ADS  Google Scholar 

  23. Thorpe, M.F. Jacobs, DJ., Chubynsky, M.V. and Rader, J.A. (1999) Generic rigidity of network glasses, in M.F. Thorpe and P.M. Duxbury (eds.), Rigidity Theory and Applications, Kluwer Academic/Plenum Publishers, New York, pp. 239–277.

    Google Scholar 

  24. Sreeram, A.N, Varshneya, A.K and Swiler, D.R. (1991) Molar volume and elastic properties of multicomponent chalcogenide glasses, J. Non-Cryst. Solids 128, 294–309.

    Article  ADS  Google Scholar 

  25. Sooryakumar, R. (private communication). Xia, H., Gump, J., Finkler, I., Sooryakumar, R., Bresser, W.J., Boolchand, P., (unpublished).

    Google Scholar 

  26. Böhmer, R. and Angell, C.A. (1992), Correlations of the non-exponentiality and state dependence of mechanical relaxation with bond-connectivity in Ge-As-Se supercooled liquids. Phys. Rev. B45, 1091–1094.

    Google Scholar 

  27. Tatsumisago, M., Halfpap, B,L, Green, J.L., Lindsay, S.M. and Angell, C.A. (1990) Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation and the Kauzmann paradox, Phys. Rev. Lett 64, 1549–1552.

    Article  ADS  Google Scholar 

  28. Senapati, U. and Varshneya, A.K (1995) Configurational arrangements in chalcogenide glasses—a new perspective on Phillips constraint theory, J. Non-Cryst. Solids 185, 289–296.

    Article  ADS  Google Scholar 

  29. Feltz, A., Aust, H., Blayer, A. (1983) Glass-formation and properties of chalcogenide systems—permitivity and the structure of glasses AsxSe1-x and GexSe1-x, J. Non-Cryst. Solids 55, 179–190.

    Article  ADS  Google Scholar 

  30. Kamitakahara, W.A, Cappelletti, R.L., Boolchand, P., et al. (1991) Vibrational densities of states and network rigidity in chalcogenide glasses, Phys. Rev. B44 394–100.

    ADS  Google Scholar 

  31. Boolchand, P., Bresser, W.J., Zhyang, M., Wu, Y., Wells, J., Enzweiler, R.N. (1995) Lamb-Mössbauer factors as a local probe of floppy modes in network glasses, J. Non-Cryst. Solids 182, 143–154.

    Article  ADS  Google Scholar 

  32. Enzweiler, R.N., Selvanathan, D. and Boolchand, P. Rigidity transition in GexTe1_x glasses probed by 125Te Lamb-Mössbauer factors, (unpublished).

    Google Scholar 

  33. Bohmer, R. and Angell, C.A. (1993) Elastic and viscoelastic properties of amorphous selenium and identification of the phase-transition between ring and chain structures, Phys. Rev. B48, 5857–5864

    ADS  Google Scholar 

  34. Asokan, S., Prasad, M.Y.N, Parthasarathy, G., et al. (1989) Mechanical and chemical-thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62, 808–810.

    Article  ADS  Google Scholar 

  35. Boolchand, P., Bresser, WJ. and Suranyi, P. (1986) The molecular-structure of As2Se3 glass, Hyperfme Interact. 27, 385–388. See also Bresser, W.J., Boolchand, P. and Suranyi, P., (1981) Direct evidence for intrinsically broken chemical ordering in meltquenched glasses, Phys. Rev. Lett. 46, 1689-1692.

    Article  ADS  Google Scholar 

  36. Modulated DSC Compendium, (1997) Reprint #TA-210, TA Instruments, Inc., New Castle, DE

    Google Scholar 

  37. Wang, Y., Boolchand, P. and Micoulaut, M., Glass structure rigidity transitions and the intermediate phase in the Ge-As-Se ternary, Europhys. Lett, (submitted).

    Google Scholar 

  38. Kerner, R. and Micoulaut, M. (1994) A theoretical-model of formation of covalent binary glasses. 1. General setting, J. Non-Cryst. Solids 176, 271–279.

    Article  ADS  Google Scholar 

  39. Micoulaut, M. and Naumis, G.G. (1999) Glass transition temperature variation, cross-linking and structure in network glasses: a stochastic approach, Europhys. Lett. 47, 568–574.

    Google Scholar 

  40. Galeener, F.L. (1990) The structure and vibrational excitations of simple glasses, J. Non-Cryst. Solids 123, 182–190. A symposium was held in 1995 to honor the late Frank L. Galeener's contributions to glass science. The interested reader may want to look at the proceedings of this symposium published in J. Non-Cryst. Solids 182, 1-212.

    Article  ADS  Google Scholar 

  41. Lucovsky, G. (1979) Chemical effects on the frequencies of Si-H vibrations in amorphous solids, Solid State Commun. 29, 571–576.

    Article  ADS  Google Scholar 

  42. Griffiths, J.E., Espinosa, G.P., Remeika J.P., et al. (1982) Reversible quasi-crystallization in GeSe2 glass, Phys. Rev. B 25, 1272–1286.

    Article  ADS  Google Scholar 

  43. Murase, K. (2000) Vibrational excitations in glasses: Raman scattering, in P. Boolchand (ed.), Insulating and Semiconducting Glasses, World Scientific Press, Inc., Singapore, pp. 415–463.

    Chapter  Google Scholar 

  44. Selvanathan, D., Bresser, W.J., Boolchand, P, and Goodman, B., (1999) Thermally reversing window and stiffness transitions in chalcogenide glasses, Solid State Commun. 111, 619–624.

    Article  ADS  Google Scholar 

  45. Selvanathan, D., Bresser W.J., Boolchand P., (2000), Stiffness transitions in SixSe1-x glasses from Raman scattering and Temperature-Modulated Differential Scanning Calorimetry, Phys. Rev. B61, 15061–15076.

    ADS  Google Scholar 

  46. Boolchand, P., Feng, X., Bresser W.J., (2000) Rigidity transitions in binary Ge-Se Glasses and the intermediate phase, J. Non-Cryst. Solids (submitted).

    Google Scholar 

  47. Franzblau, D.S., Tersoff, J., (1992) Elastic properties of a network model of glasses, Phys. Rev. Lett. 68: 2172–2175.

    Article  ADS  Google Scholar 

  48. He, H., Thorpe, M.F., (1985) Elastic properties of glasses, Phys. Rev. Lett. 54: 2107–2110.

    Article  ADS  Google Scholar 

  49. Zeller, R.C., Pohl, R.O., (1971) Thermal conductivity and specific heat of non-crystalline solids, Phys. Rev. B4, 2029–2041.

    ADS  Google Scholar 

  50. Phillips, W.A., (1972) Tunneling states in amorphous solids, J. Low Temp. Physics, 7, 351–360.

    Article  ADS  Google Scholar 

  51. Borisova, Z. U., (1981), in Glassy Semiconductors, Plenum Press, New York

    Google Scholar 

  52. Susman, S., Volin, K.J., Montague, D.G., et al., (1990) The structure of vitreous and liquid GeSe2—a neutron-diffraction study, J. Non-Cryst. Solids 125: 168–180.

    Article  ADS  Google Scholar 

  53. Cobb, M., Drabold, D.A., (1997) Ab Initio Molecular-Dynamics Study of Liquid GeSe2, Phys. Rev. B56, 3054–3065.

    ADS  Google Scholar 

  54. Massobrio, C, Pasquarello, A., Car, R., (1998) Microscopic structure of liquid GeSe2: The problem of concentration fluctuations over intermediate range distances, Phys. Rev. Lett. 80, 2342–2345

    Article  ADS  Google Scholar 

  55. Vashishta, P., Kalia, R.K., Antonio, G.A., et al., (1989) Atomic correlations and intermediate-range order in molten and amorphous GeSe2, Phys. Rev. Lett. 62, 1651–1654.

    Article  ADS  Google Scholar 

  56. Micoulaut M., private communication.

    Google Scholar 

  57. Sarrach, D.J., deNeufville, J.P., Haworth, H.L. (1976) Studies of amorphous Ge-Se-Te alloys (1): Preparation and calorimetric observations, J. Non-Cryst. Solids 22, 245–267.

    Article  ADS  Google Scholar 

  58. Harris, J.H., and Tenhaver, M.A., (1996) Photoacoustic Spectroscopy of SixSe1_x glasses, J. Non-Cryst. Solids 83, 272–281.

    Article  Google Scholar 

  59. Sugai, S., (1987) Stochastic random network model in Ge and Si chalcogenide glasses, Phys. Rev. B35, 1345–1361.

    ADS  Google Scholar 

  60. Tenhover, M., Hazle, M.A., Grasselli, R.K., (1983) Atomic-structure of SiS2 and SiSe2 glasses, Phys. Rev. Lett. 51, 404–406.

    Article  ADS  Google Scholar 

  61. Griffiths, J.E., Malyj, M., Espinosa, G.P., et al., (1984) Crystalline SiSe2 and S1-xSe1_x glasses—Syntheses, glass-formation, structure, phase-separation, and Raman-spectra, Phys. Rev. B30, 6978–6990.

    ADS  Google Scholar 

  62. Chayes, J.T., Chayes, L., Fisher, D.S., et al., (1986) Finite-size scaling and correlation lengths for disordered systems, Phys. Rev. Lett. 57, 2999–3002

    Article  MathSciNet  ADS  Google Scholar 

  63. Josephson, B.D., (1966) Relation between the superfluid density and order parameter for superfluid He near Tc, Phys. Lett. 21, 608–609.

    Article  ADS  Google Scholar 

  64. Nemilov, S.V., (1965) Viscosity and structure of glass (in Russian), Nauka, Moscow-leningrad, pp. 64–68.

    Google Scholar 

  65. Rubinstein, M., Taylor, P.C., (1974) Nuclear quadrupole resonance in amorphous and crystalline As2S3, Phys. Rev. B9, 4258–4276.

    ADS  Google Scholar 

  66. Meyers, M.B., Felty, E.J., (1967) Structural characterizations of vitreous inorganic polymers by thermal studies, Mat. Res. Bull, 2, 535–546.

    Article  Google Scholar 

  67. Wright, A.C. (2000) Glass structure by scattering methods and spectroscopy, in Boolchand, P. (ed.), Insulating and Semiconducting Glasses, pp. 147–190.

    Google Scholar 

  68. Zallen, R., (1983) The Physics of Amorphous Solids, John Wiley & Sons, New York.

    Book  Google Scholar 

  69. Wagner, T., Kasap, S.O., (1996) Glass transformation, heat capacity and structure of AsxSe1 x Glasses studied by modulated temperature differential scanning calorimetry experiments, Phil. Mag. B74, 667–680.

    Article  Google Scholar 

  70. Georgiev, D.G., Boolchand, P., Micoulaut M., Rigidity transitions and molecular structure of AsxSe1_x glasses, Phys. Rev. B (submitted).

    Google Scholar 

  71. Georgiev, D.G., Mitkova, M, Boolchand, P., Brunklaus, H., Eckert, H., Micoulaut, M., Molecular Structure, Glass transition temperature variation, agglomeration theory, and network connectivity of binary P-Se glasses, Phys. Rev. B (submitted)

    Google Scholar 

  72. Wang, Y., Wells, J., Bresser, W.J., Boolchand, P., (2000) Stiffness Transition in Ge-Se-I: Theory and experiment (unpublished)

    Google Scholar 

  73. Fritzsche, H., (2000), Light-induced structural changes in glasses, in P. Boolchand (ed.) Insulating and Semiconducting Glasses, World Scientific Press Inc., Singapore, pp. 653–690.

    Google Scholar 

  74. Hisakuni, H., Tanaka, K., (1995), Optical microfabrication of chalcogenide glasses, Science 270, 974–975.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boolchand, P., Selvanathan, D., Wang, Y., Georgiev, D.G., Bresser, W.J. (2001). Onset of Rigidity in Steps in Chalcogenide Glasses. In: Thorpe, M.F., Tichý, L. (eds) Properties and Applications of Amorphous Materials. NATO Science Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0914-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0914-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6811-3

  • Online ISBN: 978-94-010-0914-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics