Skip to main content

Optical Properties of Amorphous and Microcrystalline Silicon Layers

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 9))

Abstract

Optical spectra of semiconductor provide a fundamental source of information on its electronic structure. Photons can excite electrons from the filled valence bands to the empty conduction bands (interband optical transitions), from filled defect states to the conduction band or from the valence band to the empty defect states (defect-connected optical transitions). These are the basic optical transitions, which we will treat here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M. and Wolf, E. (1980) Principles of Optics, 6th ed Cambridge University Press, Cambridge.

    Google Scholar 

  2. Yu, P. Y. and Cardona, M. (1996) Fundamentals of Semiconductors, Springer-Verlag, Berlin

    MATH  Google Scholar 

  3. Bass, M. ed., (1995) Handbook of Optics, vol. I and II, McGraw-Hill, Inc., New York

    Google Scholar 

  4. Ward, L. (1994) The Optical Constants of Bulk Materials and Films, 2nd ed., IOP Publ., Bristol

    Google Scholar 

  5. Heavens, O.S. (1991) Optical Properties of Thin Solid Films, Dover Publications, Inc., New York

    Google Scholar 

  6. Yeh, P. (1988) Optical Waves in Layered Media, J. Wiley, New York

    Google Scholar 

  7. R.A. (1991) Hydrogenated Amorphous silicon, Cambridge University Press, Cambridge

    Google Scholar 

  8. Tiedje, T. and Rose, A. (1980) A physical interpretation of dispersive transport in disordered semiconductors, Solid State Commun. 37, 49–52

    Article  ADS  Google Scholar 

  9. Tiedje, T., Cebulka, J.M., Morel, D.L., Abeles, B. (1981) Evidence for exponential band tails in amorphous silicon hydride, Phys. Rev. Lett. 46, 1425–1428

    Article  ADS  Google Scholar 

  10. Vanecek, M., Kocka,, Stuchlik, J., Triska, A. (1981) Direct Measurement of the Gap States and Band Tail Absorption by Constant Photocurrent Method in Amorphous Silicon., Solid State Commun. 39, 1199–1202.

    Article  ADS  Google Scholar 

  11. Vanecek, M., Kocka, J., Stuchlik, J, Kozisek, Z., Stika, 0., Triska, A. (1983) Density of the Gap States in Undoped and Doped Glow Discharge a-Si:H., Solar Energy Materials 8, 411–423.

    Article  ADS  Google Scholar 

  12. Remes, Z., Vanecek, M., Torres, P., Kroll, U., Mahan, A.H., Crandall, R.S., (1998) Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen content, J. Non-Crystalline Solids 227–230, 876-879.

    Google Scholar 

  13. Remes, Z. (1999) Study of defects and microstructure of amorphous and microcrystalline silicon thin films and polycrystalline diamond using optical methods, PhD Thesis, http://www.fzu.cz/-remes/thesis/thesis.html

  14. Poruba, A., Remes, Z., Springer, J., Vanecek, M., Fejfar, A., Kocka, J., Meier, J., Torres, P., Shah, A. (1999) Light scattering in microcrystalline silicon thin film cells, Proc. 2 rid World Conf on Photovoltaic Solar Energy Conversion, Vienna 1998, vol. 1, published by European Commission, Luxenbourg, p. 781–784.

    Google Scholar 

  15. Shah, A., Vallat-Sauvain, E., P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, M. Vanecek (2000) Intrinsic microcrystalline silicon deposited by very high frequency glow discharge: a new material for photovoltaics and optoelectronics, Materials Science and Engineering B69-70,219–226.

    Google Scholar 

  16. Poruba, A., Fejfar, A., Remes, Z., Springer, J., Vanecek, M., Kocka, J., Meier, J., Torres, P., Shah, A. (2000) Optical absorption and light scattering in microcrystalline silicon thin films and solar cells, J. Appl Phys. 88, 148–160.

    Article  ADS  Google Scholar 

  17. Beckmann, P. and Spizzichino, A. (1963) The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press, Oxford.

    MATH  Google Scholar 

  18. Beckmann, P., (1967) Scattering of light by rough surfaces, in E. Wolf, ed., Progress in Optics, vol. VI, North-Holland, Amsterdam, pp. 55–72

    Google Scholar 

  19. Jackson, W.B., Amer, N.M., Boccara, A.C., Fournier, D. (1981) Photothermal deflection spectroscopy and detection, Appl. Optics 20, 1333

    Article  ADS  Google Scholar 

  20. Amer, N.M. and Jackson, W.B. (1984) Optical Properties of Defect States in a-Si:H, in: J.I. Pankove, ed. Semiconductors and Semimetals, vol. 21, part B, Hydrogenated Amorphous Silicon, Academic Press, Inc., Orlando, pp. 83–112

    Google Scholar 

  21. Curtins, H. and Favre, M. (1988) Surface and bulk states determined by photothermal deflection spectroscopy, in: H. Fritzsche, ed., Amorphous silicon and related materials, World Scientific, Singapore, pp. 329–363.

    Google Scholar 

  22. Vanecek, M., Kocka, J., Poruba, A., Fejfar, A. (1995) Direct measurement of the deep defect density in thin amorphous silicon films with the “absolute” constant photocurrent method, J. Appl Phys. 78, 6203–6213.

    Article  ADS  Google Scholar 

  23. Van de Hülst, H.C. (1957) Light Scattering by Small Particles, J. Wiley, New York

    Google Scholar 

  24. Poruba, A., Fejfar, A., Salyk, 0., Vanecek, M., Kocka, J. (2000) Surface and bulk light scattering in microcrystalline silicon for solar cells, J. Non-Crystalline Solids, in print

    Google Scholar 

  25. Cody, G.D. (1984) The Optical Absorption Edge of a-Si:H, in: J.I. Pankove, ed., Semiconductors and Semimetals, vol. 21, part B, Hydrogenated Amorphous Silicon, Academic Press, Inc., Orlando, pp. 11–82.

    Google Scholar 

  26. Vanecek, M., Poruba, A., Remes, Z., Rosa, J., Kamba, S., Vorlicek, V., Meier, J., Shah, A. (2000) Electron spin resonance and optical characterization of defects in microcrystalline silicon, J. Non-Crystalline Solids, 266-9, 519–523.

    Article  ADS  Google Scholar 

  27. Wyrsch, N., Finger, F., McMahon, T.J., Vanecek, M. (1991) How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,. J. Non-Crystalline Solids 137/138, 347–350

    Article  ADS  Google Scholar 

  28. Mahan, A.H. and Vanecek, M. (1991) A reduction in the Staebler-Wronski effect observed in low H content a-Si:H films deposited by the hot wire technique, in: B.L. Stafford, ed., Amorphous Silicon Materials and Solar Cells, AIP Conf. Proc. 234, AIP, New York, pp. 195–202.

    Google Scholar 

  29. Vanecek, M., Fric, J., Crandall, R.S., Mahan, A.H. (1993) On the Role of Hydrogen in Metastable Defect Equilibration in Undoped Hydrogenated Amorphous Silicon J.Non-Crystalline Solids 164-6,335–338.

    Article  ADS  Google Scholar 

  30. Müller, J., (1998) Electron Spin Resonance Studies on Microcrystalline Silicon, PhD Thesis, Forschungszentrum Jülich

    Google Scholar 

  31. Tsu, D.V., Cho, B.S., Ovshinsky, S.R., Guha, S., Yang, J. (1997) Effects of hydrogen dilution on the structure of amorphous silicon alloys, Appl. Phys. Lett 71,1317–1319.

    Article  ADS  Google Scholar 

  32. Stutzmann, M. (1992) Metastability in Amorphous and Microcrystalline Semiconductors, in: J. Kanicki, ed., Amorphous and Microcrystalline Semiconductor Devices, vol. II, Artech House, Boston, pp. 129–187

    Google Scholar 

  33. Vanecek, M. and Mahan, A.H. (1995) Thermally induced metastable defect studies on hydrogenated amorphous silicon films with different hydrogen contents, J. Non-Crystalline Solids 190,163–168.

    Article  ADS  Google Scholar 

  34. Remes, Z., Vanecek, M., Mahan, A.H., Crandall, R.S. (1997) Silicon network relaxation in amorphous hydrogenated silicon, Phys. Rev. B56, R12710–12713.

    ADS  Google Scholar 

  35. Wemple, S.H. and DiDomenico, M. (1971) Behavior of the dielectric constant in covalent and ionic materials, Phys. Rev. B3, 1338–1351.

    ADS  Google Scholar 

  36. Knobloch, J., Glunz, S.W., Henninger, V., Warta, W., Wettling, W., Schomann, F., Schmidt, W., Endros, A., Munzer, K.A. (1995) 21% efficient solar cells processed from Czochralski grown silicon, Proc. 13 th European Photovoltaic Solar Energy Conf., Nice 1995, H. S. Stephens, Bedford, UK, pp. 9–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vanecek, M., Poruba, A. (2001). Optical Properties of Amorphous and Microcrystalline Silicon Layers. In: Thorpe, M.F., Tichý, L. (eds) Properties and Applications of Amorphous Materials. NATO Science Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0914-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0914-0_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6811-3

  • Online ISBN: 978-94-010-0914-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics