Phase-Field Modelling of Evolving Microstructures

  • G. J. Schmitz
Part of the NATO Science Series book series (NAII, volume 8)

Abstract

Recent developments of the phase-field concept and its applications in modeling microstructures evolving during solidification of multicomponent and multiphase alloys are reviewed and future directions of the method like e.g. coupling to thermodynamic databases or coupling between macroscopic process simulation and simulation of microstructure evolution are highlighted.

Keywords

Anisotropy Convection Boulder Tiaden 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Fix, Phase field models for free boundary problems, in “Free boundary Problems” Vol. II, Ed. A. Fasano, M. Primicerio (Piman, Boston 1983)Google Scholar
  2. 2.
    J.B. Collins, H. Levine, Diffusive interface model of diffusion-limited crystal growth, Phys. Rev. B, Vol. 31 No. 9 (1985) 6119–6122ADSCrossRefGoogle Scholar
  3. 3.
    G. Caginalp, P. C. Fife, Phys. Rev. B 33 11 (1986) 7792MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, Vol. 45 No. 10 (1992) 7424–7439ADSCrossRefGoogle Scholar
  5. 5.
    R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D 63 (1993) 410–423ADSMATHCrossRefGoogle Scholar
  6. 6.
    S.-L. Wang, R.F.Sekerka, A.A.Wheeler, B.T.Murray, S.R.Coriell, R.J.BraunGoogle Scholar
  7. 7.
    G.B. McFadden, Thermodynamically-consistent phase-field models for solidification, Physica D 69 (1993) 189–200MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    T. Ihle, H. Müller-Krumbhaar, Fractal and compact growth morphologies in phase transitions with diffusion transport, Phys. Rev. E, vol. 49 No. 4 (1994) 2972–2991ADSCrossRefGoogle Scholar
  9. 9.
    A. Karma, W. J. Rappel, Numerical Simulation of Three-Dimensional Dendritic Growth, Phys. Rev. Lett. Vol. 77 No. 19 (1996) 4050–4053ADSCrossRefGoogle Scholar
  10. 10.
    C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, X. Tong: Modeling Melt Convection in Phase-Field Simulations of Solidification. Journal of Computational Physics, to be published.Google Scholar
  11. 11.
    H.-J. Diepers, C. Beckermann, I. Steinbach: Modeling of Convection-Influenced Coarsening of a Binary Alloy Mush Using the Phase-Field Method. Modelling of Casting, Welding and Advanced Solidification VIII. Ed. by B.G. Thomas, C. Beckermann, TMS 1998, pp 565–572.Google Scholar
  12. 12.
    H.J. Diepers, C. Beckermann, I. Steinbach: A Phase-Field Method for Alloy Solidification with Convection. Proc. of the 4th Int. Conf. on Solidification Processing, Sheffield, 7.-10. July 1997. Ed. by J. Beeck, H. Jones, pp 426–430.Google Scholar
  13. 13.
    B. Nestler, A.A. Wheeler “A Multiphase-field model of eutectic and peritectic alloys:numerical simulation of growth structures”, Physica D (1999) in pressGoogle Scholar
  14. 14.
    I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende: A phase field concept for multiphase systems. Physica D 94(1996), pp 135–147.MATHCrossRefGoogle Scholar
  15. 15.
    J. Tiaden, B. Nestler, HJ. Diepers, I. Steinbach: The Multiphase-Field Model with an Integrated Concept for Modelling Solute Diffusion. Physica D (1998) 115, pp 73–86.ADSMATHCrossRefGoogle Scholar
  16. 16.
    M. Apel, I. Steinbach: Phase Field Modeling of the Growth of multicrystalline-Silicon from the Melt. POLYSE’ 98, Intern. Conference on Polycrystalline Semiconductors, Schwäbisch Gmünd, 13.-18-9.1998, to be publishedGoogle Scholar
  17. 17.
    I. Steinbach, F. Pezzolla: A Generalized field method for multiphase transformation using interface fields. Physica D, to be published.Google Scholar
  18. 18.
    H. Garcke, B. Nestler, B. Stoth “A multiphase concept: numerical simulation of moving phase boundaries and multiple junctions”, SIAM J.on Applied Mathematics (1999) in pressGoogle Scholar
  19. 19.
    H. Garcke, B. Nestler, B. Stoth:” On anisotropic order parameter models for multiphase systems and their sharp interface limit” Physica D 115 (1998) 87MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    G.J. Schmitz, B. Nestler: Simulation of phase transitions in multiphase systems: peritectic solidification of (RE)Ba2Cu3O7-x superconductors. Mat. Sci. and Eng. B53 (1998), pp 23–27.Google Scholar
  21. 21.
    J. Tiaden U. Grafe: A Phase-Field Model for Diffusion and Curvature Controlled Phase Transformations in Steels. Subm. to: PTM International Conference on Solid-Solid Phase Transformations’ 99, Kyoto, May 1999.Google Scholar
  22. 22.
    J. Tiaden: “Phase-Field simulations of the peritectic solidification of Fe-C” J. Crystal Growth 198/199 (1999) 1275–1280ADSCrossRefGoogle Scholar
  23. 23.
    M. Seeßelberg, J. Tiaden, G.J. Schmitz, I. Steinbach: Peritectic and Eutectic solidification: Simulations of the microstructure using the multi-phase-field method. Proc. of the 4th Int. Conf. on Solidification Processing, Sheffield, 7.-10. July 1997. Ed. by J. Beeck, H. Jones, pp 440–443.Google Scholar
  24. 24.
    M. Seeßelberg, J. Tiaden: Simulations of Binary Eutectic Microstructures Using the Multi-Phase-Field Method. Proc. 8th Conf. on Modelling of Casting, Welding and Advanced Solidification San Diego, June 1998, pp 557–564.Google Scholar
  25. 25.
    I. Steinbach, G.J. Schmitz: Direct numerical simulation of solidification structure using the phase field method. Proc. 8th Conf. on Modelling of Casting, Welding and Advanced Solidification San Diego, June 1998, pp 521–532.Google Scholar
  26. 26.
    B. Sundman, B. Jansson, and J.O. Anderson: CALPHAD 9 Vol.2, 1985, pp. 153–190CrossRefGoogle Scholar
  27. 27.
    G. Eriksson, K. Hack., S. Petersen, ChemApp—A programmable thermodynamic calculation interface Proceedings Werkstoffwoche’ 96, Symposium 8: Simulation, Modellierung, Informationssysteme,(1997) p.47 published by: DGM FrankfurtGoogle Scholar
  28. 28.
    B. Böttger, U. Grafe, D. Ma, S.G. Fries. Application of Thermodynamic and Mobility Data to Two-Dimensional Modelling of Dendritic Growth During Directional Solidification. CALPHAD XXVIII, International Conference on Phase Diagram Calculations and Applications, Grenoble, Spring 1999, accepted.Google Scholar
  29. 29.
    A. Engström et al: Met.Trans 25A (1994) 1127–1134Google Scholar
  30. 30.
    U. Grafe, B. Böttger, J. Tiaden, S.G. Fries: Coupling of Multicomponent Thermodynamic Databases to a Phase Field Model: Application to Gamma Prime Growth in a Ternary NI-AL-CR Model Superalloy. Subm. to: PTM International Conference on Solid-Solid Phase Transformations’ 99, Kyoto, May 1999.Google Scholar
  31. 31.
    G. Laschet, H.-J. Diepers, R. Prieler: Micro-Macro Simulation of a Laser Remelting Process. Subm to: Fifth U.S. National Congress on Computional Mechnanics, Boulder, Colorado 4.-6.8.99.Google Scholar
  32. 32.
    G. Laschet, H.-J. Diepers, I. Steinbach: Micro-Macrosimulation of laser remelting of an aluminium coating on steel. Proc. of ECLAT’ 98. European Conference on Laser Treatment of Materials, Hannover 22.-23.09.1998, pp 265–270Google Scholar
  33. 33.
    Ch. Wolters, J. Laakmann, S. Rex, G.J. Schmitz: Numerical simulation of the influence of Y2BaCuO5 particles on the growth morphology of peritectically solidifying YBa2Cu3O7-x. Proc EUCAS’ 93 Göttingen, ed.. H.C. Freyhardt, Oberursel: DGM 1993, p 353.Google Scholar
  34. 34.
    G.J. Schmitz, O. Kugeler: Isothermal production of uniaxially textured YBCO superconductors using constitutional gradients. Physica C 275 (1997), pp 205–210.ADSCrossRefGoogle Scholar
  35. 35.
    G.J. Schmitz, A. Tigges, J.C. Schmidt: Texturing of (RE)Ba2Cu3O7-x thick films by geometrical arrangements of reactive precursors. Supercond. Sci. Technol. 11 (1998) pp 950–953.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • G. J. Schmitz
    • 1
  1. 1.ACCESS e.VAachenGermany

Personalised recommendations