Skip to main content

Phase-Field Modelling of Evolving Microstructures

  • Chapter
Supermaterials

Part of the book series: NATO Science Series ((NAII,volume 8))

  • 134 Accesses

Abstract

Recent developments of the phase-field concept and its applications in modeling microstructures evolving during solidification of multicomponent and multiphase alloys are reviewed and future directions of the method like e.g. coupling to thermodynamic databases or coupling between macroscopic process simulation and simulation of microstructure evolution are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Fix, Phase field models for free boundary problems, in “Free boundary Problems” Vol. II, Ed. A. Fasano, M. Primicerio (Piman, Boston 1983)

    Google Scholar 

  2. J.B. Collins, H. Levine, Diffusive interface model of diffusion-limited crystal growth, Phys. Rev. B, Vol. 31 No. 9 (1985) 6119–6122

    Article  ADS  Google Scholar 

  3. G. Caginalp, P. C. Fife, Phys. Rev. B 33 11 (1986) 7792

    Article  MathSciNet  ADS  Google Scholar 

  4. A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, Vol. 45 No. 10 (1992) 7424–7439

    Article  ADS  Google Scholar 

  5. R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D 63 (1993) 410–423

    Article  ADS  MATH  Google Scholar 

  6. S.-L. Wang, R.F.Sekerka, A.A.Wheeler, B.T.Murray, S.R.Coriell, R.J.Braun

    Google Scholar 

  7. G.B. McFadden, Thermodynamically-consistent phase-field models for solidification, Physica D 69 (1993) 189–200

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. T. Ihle, H. Müller-Krumbhaar, Fractal and compact growth morphologies in phase transitions with diffusion transport, Phys. Rev. E, vol. 49 No. 4 (1994) 2972–2991

    Article  ADS  Google Scholar 

  9. A. Karma, W. J. Rappel, Numerical Simulation of Three-Dimensional Dendritic Growth, Phys. Rev. Lett. Vol. 77 No. 19 (1996) 4050–4053

    Article  ADS  Google Scholar 

  10. C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, X. Tong: Modeling Melt Convection in Phase-Field Simulations of Solidification. Journal of Computational Physics, to be published.

    Google Scholar 

  11. H.-J. Diepers, C. Beckermann, I. Steinbach: Modeling of Convection-Influenced Coarsening of a Binary Alloy Mush Using the Phase-Field Method. Modelling of Casting, Welding and Advanced Solidification VIII. Ed. by B.G. Thomas, C. Beckermann, TMS 1998, pp 565–572.

    Google Scholar 

  12. H.J. Diepers, C. Beckermann, I. Steinbach: A Phase-Field Method for Alloy Solidification with Convection. Proc. of the 4th Int. Conf. on Solidification Processing, Sheffield, 7.-10. July 1997. Ed. by J. Beeck, H. Jones, pp 426–430.

    Google Scholar 

  13. B. Nestler, A.A. Wheeler “A Multiphase-field model of eutectic and peritectic alloys:numerical simulation of growth structures”, Physica D (1999) in press

    Google Scholar 

  14. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende: A phase field concept for multiphase systems. Physica D 94(1996), pp 135–147.

    Article  MATH  Google Scholar 

  15. J. Tiaden, B. Nestler, HJ. Diepers, I. Steinbach: The Multiphase-Field Model with an Integrated Concept for Modelling Solute Diffusion. Physica D (1998) 115, pp 73–86.

    Article  ADS  MATH  Google Scholar 

  16. M. Apel, I. Steinbach: Phase Field Modeling of the Growth of multicrystalline-Silicon from the Melt. POLYSE’ 98, Intern. Conference on Polycrystalline Semiconductors, Schwäbisch Gmünd, 13.-18-9.1998, to be published

    Google Scholar 

  17. I. Steinbach, F. Pezzolla: A Generalized field method for multiphase transformation using interface fields. Physica D, to be published.

    Google Scholar 

  18. H. Garcke, B. Nestler, B. Stoth “A multiphase concept: numerical simulation of moving phase boundaries and multiple junctions”, SIAM J.on Applied Mathematics (1999) in press

    Google Scholar 

  19. H. Garcke, B. Nestler, B. Stoth:” On anisotropic order parameter models for multiphase systems and their sharp interface limit” Physica D 115 (1998) 87

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. G.J. Schmitz, B. Nestler: Simulation of phase transitions in multiphase systems: peritectic solidification of (RE)Ba2Cu3O7-x superconductors. Mat. Sci. and Eng. B53 (1998), pp 23–27.

    Google Scholar 

  21. J. Tiaden U. Grafe: A Phase-Field Model for Diffusion and Curvature Controlled Phase Transformations in Steels. Subm. to: PTM International Conference on Solid-Solid Phase Transformations’ 99, Kyoto, May 1999.

    Google Scholar 

  22. J. Tiaden: “Phase-Field simulations of the peritectic solidification of Fe-C” J. Crystal Growth 198/199 (1999) 1275–1280

    Article  ADS  Google Scholar 

  23. M. Seeßelberg, J. Tiaden, G.J. Schmitz, I. Steinbach: Peritectic and Eutectic solidification: Simulations of the microstructure using the multi-phase-field method. Proc. of the 4th Int. Conf. on Solidification Processing, Sheffield, 7.-10. July 1997. Ed. by J. Beeck, H. Jones, pp 440–443.

    Google Scholar 

  24. M. Seeßelberg, J. Tiaden: Simulations of Binary Eutectic Microstructures Using the Multi-Phase-Field Method. Proc. 8th Conf. on Modelling of Casting, Welding and Advanced Solidification San Diego, June 1998, pp 557–564.

    Google Scholar 

  25. I. Steinbach, G.J. Schmitz: Direct numerical simulation of solidification structure using the phase field method. Proc. 8th Conf. on Modelling of Casting, Welding and Advanced Solidification San Diego, June 1998, pp 521–532.

    Google Scholar 

  26. B. Sundman, B. Jansson, and J.O. Anderson: CALPHAD 9 Vol.2, 1985, pp. 153–190

    Article  Google Scholar 

  27. G. Eriksson, K. Hack., S. Petersen, ChemApp—A programmable thermodynamic calculation interface Proceedings Werkstoffwoche’ 96, Symposium 8: Simulation, Modellierung, Informationssysteme,(1997) p.47 published by: DGM Frankfurt

    Google Scholar 

  28. B. Böttger, U. Grafe, D. Ma, S.G. Fries. Application of Thermodynamic and Mobility Data to Two-Dimensional Modelling of Dendritic Growth During Directional Solidification. CALPHAD XXVIII, International Conference on Phase Diagram Calculations and Applications, Grenoble, Spring 1999, accepted.

    Google Scholar 

  29. A. Engström et al: Met.Trans 25A (1994) 1127–1134

    Google Scholar 

  30. U. Grafe, B. Böttger, J. Tiaden, S.G. Fries: Coupling of Multicomponent Thermodynamic Databases to a Phase Field Model: Application to Gamma Prime Growth in a Ternary NI-AL-CR Model Superalloy. Subm. to: PTM International Conference on Solid-Solid Phase Transformations’ 99, Kyoto, May 1999.

    Google Scholar 

  31. G. Laschet, H.-J. Diepers, R. Prieler: Micro-Macro Simulation of a Laser Remelting Process. Subm to: Fifth U.S. National Congress on Computional Mechnanics, Boulder, Colorado 4.-6.8.99.

    Google Scholar 

  32. G. Laschet, H.-J. Diepers, I. Steinbach: Micro-Macrosimulation of laser remelting of an aluminium coating on steel. Proc. of ECLAT’ 98. European Conference on Laser Treatment of Materials, Hannover 22.-23.09.1998, pp 265–270

    Google Scholar 

  33. Ch. Wolters, J. Laakmann, S. Rex, G.J. Schmitz: Numerical simulation of the influence of Y2BaCuO5 particles on the growth morphology of peritectically solidifying YBa2Cu3O7-x. Proc EUCAS’ 93 Göttingen, ed.. H.C. Freyhardt, Oberursel: DGM 1993, p 353.

    Google Scholar 

  34. G.J. Schmitz, O. Kugeler: Isothermal production of uniaxially textured YBCO superconductors using constitutional gradients. Physica C 275 (1997), pp 205–210.

    Article  ADS  Google Scholar 

  35. G.J. Schmitz, A. Tigges, J.C. Schmidt: Texturing of (RE)Ba2Cu3O7-x thick films by geometrical arrangements of reactive precursors. Supercond. Sci. Technol. 11 (1998) pp 950–953.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmitz, G.J. (2000). Phase-Field Modelling of Evolving Microstructures. In: Cloots, R., Ausloos, M., Pekala, M., Hurd, A.J., Vacquier, G. (eds) Supermaterials. NATO Science Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0912-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0912-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6809-0

  • Online ISBN: 978-94-010-0912-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics