Supermaterials pp 115-127 | Cite as

Magnetization in High Magnetic Field and Critical Magnetic Behaviour in Nanostructured Magnetic Oxides

  • I. Nedkov
Part of the NATO Science Series book series (NAII, volume 8)


The unique magnetic properties of small oxide particles have generated increasing interest due to their theoretical contributions to the study of magnetism, as well as their applications as new magnetic and magnetooptical high density recording media [1], as magnetic fluids [2], as in the treatment of cancer [3], etc.


High Magnetic Field Magnetic Fluid Magnetic Loss Superexchange Interaction Magnetic Sublattices 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tailhades, P., Bouet, L., Presmanes, L. and Rousset, A. (1997) Thin films and fine powders of ferrites: Materials for magneto-optical recording media, J.Phys. IV France 7, C1-691–694.CrossRefGoogle Scholar
  2. 2.
    Fannin, P.C. (1998) Wideband measurement and analysis techniques for the determination of the frequency-dependent, complex susceptibility of magnetic fluids, Adv. Chem. Phys. 104, 181.CrossRefGoogle Scholar
  3. 3.
    Chan, D.C.F., Kirpotin, D.B. and Bunn, P.A. Jr. (1993) Synthesis and evolution of colloidal magnetic iron oxides..., J. Magn. Magn. Mater. 122, 374–378.ADSCrossRefGoogle Scholar
  4. 4.
    Kodama, R.H., Berkowitz, A.E., McNiff, E.J., Jr., and Foner, S. (1996) Surface spin disorder in NiFe 2O4 nanoparticles, Phys. Rev. Lett. 77, 394–397.ADSCrossRefGoogle Scholar
  5. 5.
    Martinez, B., Obradors, X., Balcells, L., Rouanet, A. and Monty, C. (1998) Low temperature surface spin-glass transition in ?—Fe 2 O3 nanoparticles, Phys. Rev. Lett. 80, 181–184.ADSCrossRefGoogle Scholar
  6. 6.
    Kodama, R.H., Makhlouf A. Salah, Berkowitz, A.E. (1997) Finite size effects in antiferromagnetic NiOnanoparticles, Phys. Rev. Lett. 79, 1393–1396.ADSCrossRefGoogle Scholar
  7. 7.
    Kodama, R.H. and Berkowitz, A.E. (1999) Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B 59, 6321–6336.ADSCrossRefGoogle Scholar
  8. 8.
    Tronc, E. and Jolivet, J.P. (1992) Magnetic Properties of Fine Particles (eds. J-L. Dormann, D. Fiorani) 199.Google Scholar
  9. 9.
    Jolivet, J.P., Chaneac, C., Prene, P., Vayssieres, L. and Tronc, E. (1997) Wet chemistry of spinel iron oxides particles, J. Phys. IV France 7, CI-573-....Google Scholar
  10. 10.
    Mitov, I., Cherkezova-Zheleva, Z. and Mitov, V. (1997) Comparative study of the mechanochemical activation of magnetite Fe 3O4 and maghemite ?-Fe 2O3, Phys. Stat. Sol. (a) 161, 475–482ADSCrossRefGoogle Scholar
  11. 11.
    Nedkov, I., Merodiiska, T., Milenova, L. and Koutzarova, T. (1999) Modified ferrite plating of Fe 3O4 and CuFe 2O4 thin films, European Materials Research Society symposia, 1-4 June, Strasbourg, France, Abstracts GXP6 (to be published in J.Magn.Magn.Mater.) Google Scholar
  12. 12.
    Krupicka, V. (1973) Physik der ferrite und der verwandten magnetischen oxide, Prague; Belov, V. (1972) Ferrites in the high magnetic fields,Science, RussiaGoogle Scholar
  13. 13.
    Goodenough, J.B., (1965) Chemical inhomogeneities and square BH loops, J. Appl. Phys. 36, 2342–2374.ADSCrossRefGoogle Scholar
  14. 14.
    Anderson, P. W., (1950) Antiferromagnetism. Theory of superexchange interactions, Phys. Rev. 79, 350–405.ADSMATHCrossRefGoogle Scholar
  15. 15.
    Tejada, J., Ziolo, R.F. and Zang, X.X. (1996) Quantum tunneling of magnetization in nanostructured materials, Chem.Mater. 8, 1784–1792.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • I. Nedkov
    • 1
  1. 1.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations