Myocardial Exercise SPET and with Pharmacologic Stimulation

  • Jaume Candell-Riera
  • Cesar Santana-Boado
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 234)


Patients who are referred to the nuclear cardiology department for coronary disease diagnosis constitute a relatively biased population in that, in general, they represent a group in whom the results of a previous stress test had been inconclusive [1-5]. Perfusion scintigraphy is performed, usually, with dynamic exercise and with the same methodology as for a conventional exercise test. The diagnostic efficacy is conditioned, among other factors, by the O2 consumption (METs) and by the myocardial consumption of O2 (peak heart rate and the product of heart rate x systolic blood pressure) [6-10].


Myocardial Perfusion Imaging Exercise Test Single Photon Emission Tomography Multivessel Disease Peak Heart Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Candell-Riera J, Ortega D, Alijarde M, et al. Gammagraoa miocárdica con TI201: sensibilidad, especificidad y valor predictivo. Med Clín (Barc) 1984; 82: 656–660.Google Scholar
  2. 2.
    Candell-Riera J, Castell J, Ortega D et al. Diagnostic accuracy of radionuclide techniques in patients with equivocal electrocardiographic exercise testing. Eur Heart J 1990; 11: 980–989.PubMedGoogle Scholar
  3. 3.
    Candell-Riera J, Bardají A, Castell-Conesa J, Jurado JA, Magriñá J. 1V. La cardiología nuclear en la cardiopatía isquémica crónica. Rev Esp Cardiol 1997; 50: 83–91.PubMedGoogle Scholar
  4. 4.
    Castell J, Santana-Boado C, Candell-Riera J et al. La tomogammagrafia miocárdica y el ECG de esfuerzo en el diagnóstico de la enfermedad coronaria multivaso. Rev Esp Cardiol 1997; 50: 635–642.Google Scholar
  5. 5.
    Santana-Boado C, Candell-Riera J, Castel) J et al. Diagnostic accuracy of 99mTc-isonitrile SPET in women and in men. J Nucl Med 1998; 39: 751–755.PubMedGoogle Scholar
  6. 6.
    Amsterdam EA, Price JE, Berman D et al. (1977) Exercise testing in the indirect assessment of myocardial oxygen consumption: application for evaluation of mechanisms and therapy of angina pectoris, in Amsterdam EA, Wilmore JH and DeMaria AN (eds.), Exercise in cardiovascular health and disease, Yorke Medical Books, New York, pp. 218–233.Google Scholar
  7. 7.
    Naughton J (1988) Clinical and physiological adaptations to multistage exercise tests, in Naughton J (ed.), Exercise testing. Physiological, biomechanical and clinical principles, Futura Publishing Company, New York, pp. 63–94.Google Scholar
  8. 8.
    Fletcher GF, Balady G, Froelicher VF et al. Exercise standards. A statement for healthcare professionals from the American Heart Association. Circulation 1995; 91: 580–615.PubMedGoogle Scholar
  9. 9.
    Gibbons RJ, Balady GJ, Beaseley JW et al. ACC/AHH guidelines for exercise testing. J Am Coll Cardiol 1997; 30: 260–315.PubMedGoogle Scholar
  10. 10.
    Gerson MC (1987) Test accuracy, test selection, and test result interpretation in chronic coronary artery disease, in Gerson MC (ed.), Cardiac nuclear medicine, McGraw-Hill Book Company, New York, pp. 309–347.Google Scholar
  11. 11.
    Kaul S, Newell JB, Chesler DA et al. Quantitative thallium imaging findings in patients with normal coronary angiographic findings and in clinically normal subjects. Am J Cardiol 1986; 57: 509–512.PubMedGoogle Scholar
  12. 12.
    McCarthy DM, Blood DK, Sciacca RR et al. Single dose myocardial perfusion imaging with thallium-201: application in patients with nondiagnostic electrocardiographic stress tests. Am J Cardiol 1979; 43; 899–906.PubMedGoogle Scholar
  13. 13.
    Hamilton GW, Narahara KA, Yee H et al. Myocardial imaging with thallium-201: effect of cardiac drugs on myocardial images and absolute tissue distribution. J Nucl Med 1978; 19: 10–16.PubMedGoogle Scholar
  14. 14.
    Brown KA, Rowen M. Impact of antianginal medications, peak heart rate and stress level on the prognostic value of a normal exercise myocardial perfusion imaging study. J Nucl Med 1993; 34: 1467–1471.PubMedGoogle Scholar
  15. 15.
    Steele P, Sklar J, Kirch D et al. Thallium-201 myocardial imaging during maximal and submaximal exercise: comparison of submaximal exercise with propranolol. Am Heart J 1983; 106: 1353–1357.PubMedGoogle Scholar
  16. 16.
    Young DZ, Guiney TE, McKusick KA et al. Unmasking potential myocardial ischemia with dipyridamole thallium imaging in patients with normal submaximal exercise thallium test. Am J Noninvas Cardiol 1987; 1: 11–14.Google Scholar
  17. 17.
    Heller GV, Ahmed I, Tilkemeier PL et al. Influence of exercise intensity on the presence, distribution and size of thallium-201 defects. Am Heart J 1992; 123: 909–916.PubMedGoogle Scholar
  18. 18.
    Hockings B, Saltissi S, Croft DN et al. Effect of beta adrenergic blockade on thallium-201 myocardial perfusion imaging. Br Heart J 1983; 49: 83–89.PubMedGoogle Scholar
  19. 19.
    Martin GJ, Henkin RE, Scanlon PJ. Beta blockers and the sensitivity of the thallium treadmill test. Chest 1987; 92: 486–487.PubMedGoogle Scholar
  20. 20.
    Massie BM, Wisneski J, Kramer B et al. Comparison of myocardial thallium-201 clearance after maximal and submaximal exercise: implications for diagnosis of coronary artery disease: concise comunication. J Nucl Med 1982; 23: 381–385.PubMedGoogle Scholar
  21. 21.
    Kaul S, Chesler DA, Pohost GM et al. Influence of peak exercise heart rate on normal thallium-201 myocardial clearance. J Nucl Med 1986; 27: 26–30.PubMedGoogle Scholar
  22. 22.
    Nordrehaug JE, Danielsen R, Vik-Mo H. Effects of heart rate on myocardial thallium-201 uptake and clearance. J Nucl Med 1989; 30: 1972–1976.PubMedGoogle Scholar
  23. 23.
    Oosterhuis WP, Breeman A, Niemeyer MG et al. Patients with a normal exercise thallium-201 myocardial scintigram: always a good prognosis ?. Eur J Nucl Med 1993; 20: 151–158.PubMedGoogle Scholar
  24. 24.
    Iskandrian AS, Heo J, Kong B et al. The effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989; 14: 1477–1486.PubMedGoogle Scholar
  25. 25.
    Candell-Riera J (1994) Prognostic evaluation and follow-up of chronic coronary artery disease, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear Cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp. 216–240.Google Scholar
  26. 26.
    Castell J, Fraile M, Candell J et al. El rendimiento diagnóstico de la gammmagrafia de esfuerzo con talio y la “mayoría silenciosa”. Rev Esp Cardiol 1988; 41: 12–19.PubMedGoogle Scholar
  27. 27.
    Santana-Boado C, Candell-Riera J, Castell-Conesa J et al. Diagnóstico de la enfermedad coronaria mediante la tomogammagrafia de esfuerzo con isonitrilos-tecnecio-99m. Med Clín (Bare.) 1995; 105: 201–204.Google Scholar
  28. 28.
    Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 2000; 101: 1465–1478.PubMedGoogle Scholar
  29. 29.
    Fraile M, Santana-Boado C, Candell-Riera J et al. Exercise SPET 99mTc-MIBI in diagnosis of coronary artery disease in patients with equivocal electrocardiographic exercise testing. J Nucl Cardiol 1995; 10: P01–039. (Abstr.).Google Scholar
  30. 30.
    Candell-Riera J, Santana-Boado C, Castell-Conesa J et al. Simultaneous dipyridamole /maximal subjective exercise with 99m Tc-MIBI SPECT. Improved diagnostic yield in coronary artery disease. J Am Coll Cardiol 1997; 29: 531–536.PubMedGoogle Scholar
  31. 31.
    Santana-Boado C, Candell-Riera J, Castell.1 et al. Importancia de los parámetros ergometricos en los resultados de la tomogammagrafia de perfusión miocárdica. Med Clin (Bare) 1997; 109: 406–409.Google Scholar
  32. 32.
    Rutheford JD, Braunwald E (1992) Chronic ischemic heart disease, in Braunwald E (ed.), Heart Disease, W. B. Saunders Company, Philadelphia, pp. 1292–1364.Google Scholar
  33. 33.
    White MP. Pharmacologic stress testing: understanding the options. J Nucl Cardiol 1999; 6: 672–675.PubMedGoogle Scholar
  34. 34.
    Travin MI, Wexler JP. Pharmacological stress testing. Semin Nucl Med 1999; 29: 298–318.Google Scholar
  35. 35.
    Hashimoto A, Palmer EL, Scott JA et al. Complications of exercise and pharmacologic stress tests: differences in younger and elderly patients. J Nucl Cardiol 1999; 6: 612–619.PubMedGoogle Scholar
  36. 36.
    Gould KL, Westcott RJ, Albro PC et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 1978; 41: 279–287.PubMedGoogle Scholar
  37. 37.
    Albro PC, Gould KL, Westcott RJ et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 1978; 42: 751–760.PubMedGoogle Scholar
  38. 38.
    Gould KL. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. IV. Limits of detection of stenosis with idealized experimental cross-sectional myocardial imaging. Am J Cardiol 1978; 42: 761–768.PubMedGoogle Scholar
  39. 39.
    Ranhosky A, Kempthorne-Rawson J. Intravenous dipyridamole thallium imaging study group. The safety of intravenous dipiridamole thallium myocardial perfusion imaging. Circulation 1990; 81: 1205–1209.Google Scholar
  40. 40.
    Del Rio A, Castro Beiras JM, Asin Cardiel E et al. Talio-201 dipiridamol. Valor diagnóstico en la enfermedad coronaria. Rev Esp Cardiol 1984; 37: 90–94.PubMedGoogle Scholar
  41. 41.
    Hendel RC, Layden JJ, Leppo JA. Prognostic value of dipyridamole thallium scintigraphy for evaluation of ischemic heart disease. J Am Coll Cardiol 1990; 15: 109–116.PubMedGoogle Scholar
  42. 42.
    Picano E. Dipyridamole-echocardiography test: historical background and physiologic basis. Eur Heart J 1989; 10: 365–376.PubMedGoogle Scholar
  43. 43.
    Leppo JA. Dipyridamole-thallium imaging: The lazy man’s stress test. J Nucl Med 1989; 30: 291–287.Google Scholar
  44. 44.
    Beller GA. Dipyridamole thallium-201 scintigraphy: an excellent alternative to exercise scintigraphy. J Am Coll Cardiol 1989; 14: 1642–1644.PubMedGoogle Scholar
  45. 45.
    Beller GA. Dipyridamole thallium 201 imaging. How safe is it?. Circulation 1990; 81: 1425–1427.PubMedGoogle Scholar
  46. 46.
    Wackers FJ. Pharmacologic stress with dipyridamole: how lazy can one be?. J Nucl Med 1990; 30: 1024–1027.Google Scholar
  47. 47.
    Galli M, Marcassa C, Bosimini E, Zoccarato O, Comazzi F, Giannuzzi P. ECG-manifest and ECG-silent dipyridamole technetium-99m sestamibi SPET perfusion defects in patients with ischaemic heart disease. Eur J Nucl Med 1997; 24: 160–169.PubMedGoogle Scholar
  48. 48.
    Amanullah AM, Aasa M. Significance of ST segment depression during adenosine-induced coronary hyperemia in angina pectoris and correlation with angiographie, scintigraphic, hemodynamic, and echocardiographic variables. Int J Cardiol 1995; 48: 167–176.PubMedGoogle Scholar
  49. 49.
    Josephson MA, Brown BG, Hecht HS et al. Noninvasive detection and localization of coronary stenoses in patients: Comparison of resting dipyridamole and exercise thallium-201 myocardial perfusion imaging. Am Heart J 1982; 103: 1008–1018.PubMedGoogle Scholar
  50. 50.
    Schelbert HR, Wisenberg G, Phelps ME et al. Noninvasive assessment of coronary stenoses by myocardial imaging during coronary vasodilation. V. Detection of 47% diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed tomography in intact dogs. Am J Cardiol 1979; 43: 200–208.PubMedGoogle Scholar
  51. 51.
    Leppo J, Boucher CA, Okada RD et al. Serial thallium-201 myocardial imaging after dipyridamole infusion: Diagnostic utility in detecting coronary stenoses and relationship to regional wall motion. Circulation 1982; 66: 649–657.PubMedGoogle Scholar
  52. 52.
    lskandrian AS, Verani MS (1996) Exercise perfusion imaging in coronary artery disease: Physiology and diagnosis, in Iskandrian AS and Verani MS (eds.), Nuclear cardiac imaging: principles and applications. F.A. Davis Company, Philadelphia, pp. 73–143.Google Scholar
  53. 53.
    Sorensen S, Groves B, Chaudhuri T. Regional myocardial blood flow and hemodynamics in man after intravenous dipyridamole. Circulation 1980; 62 (Suppl. III): III-9 (Abstr.).Google Scholar
  54. 54.
    Wilson RF, Laughlin DE, Ackell PH et al. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985; 72: 82–92.PubMedGoogle Scholar
  55. 55.
    Okada RD, Dai Y, Boucher CA, Pohost GM. Serial thallium-201 imaging after dipyridamole for coronary disease detection: Quantitative analysis using myocardial clearance. Am Heart J 1984; 107: 475–485.PubMedGoogle Scholar
  56. 56.
    Hayne MP, Gould FL, Gerson MC (1991) Methods alternative to dynamic leg exercise for detecting chronic coronary artery disease, in Gerson MC (ed.), Cardiac Nuclear Medicine, pp. 273–298.Google Scholar
  57. 57.
    Rockectt JF, Magill HL, Lovelless VS et al. Intravenous Dipyridamole thallium SPECT imaging. Methodology, applications, and interpretations. Clin Nucl Med 1990; 15: 712–725.Google Scholar
  58. 58.
    Picano E, Lattanzi F, Masini M et al. High dose dipyridamole echocardiography test in effort angina pectoris. J Am Coll Cardiol 1986; 8: 848–854.PubMedGoogle Scholar
  59. 59.
    Martínez-Martínez A, Vázquez R, Sánchez A et al. Estudio prospectivo con talio-201 y dipiridamol a dosis bajas como test diagnóstico incruento predictor de lesiones coronarias. Rev Esp Cardiol 1984; 37: 418–424.PubMedGoogle Scholar
  60. 60.
    Loeb HS, Danoviz J, Miller A et al. Effects of oral dipyridamole on coronary dynamics and myocardial metabolism at rest and during pacing-induced angina in patients with coronary artery disease. Am Heart J 1983; 105: 906–910.PubMedGoogle Scholar
  61. 61.
    Segall GM, Davis MJ. Variability of serum drug level following a single oral dose of dipyridamole. J Nucl Med 1988; 29: 1662–1667.PubMedGoogle Scholar
  62. 62.
    Iskandrian AS, Verani MS (1996) Pharmacologic stress testing and other alternative techniques in the diagnosis of coronary artery disease, in Iskandrian AS and Verani MS (eds.), Nuclear cardiac imaging: principles and applications. F.A. Davis Company, Philadelphia, pp. 219–241.Google Scholar
  63. 63.
    Smits P, Boekema P, de Andreu R et al. Evidence for an antagonism between caffeine and adenosine in the human cardiovascular system. J Cardiovasc Pharmacol 1987; 10: 136–143.PubMedGoogle Scholar
  64. 64.
    Fredholm BB, Persson CGA. Xanthine derivates as adenosine receptor antagonists. Eur J Pharmacol 1982; 81: 673–676.PubMedGoogle Scholar
  65. 65.
    Alfonso S. Inhibition of coronary vasodilating action of dipyridamole and adenosine by aminophylline in the dog. Circ Res 1970; 26: 743–752.Google Scholar
  66. 66.
    Holgate ST, Mann JS, Cushley MJ. Adenosine as a bronchoconstrictor mediator in asthma and its antagonism by methylxanthines. J Allergy Clin Immunol 1984; 74: 302–306.PubMedGoogle Scholar
  67. 67.
    Taviot B, Pavheco Y, Coppere B et al. Bronchospasm induced in an asthmatic by the injection of adenosine. Presse Med 1986; 15: 1103–1117.PubMedGoogle Scholar
  68. 68.
    Lette J, Tatum JL, Fraser S et al. Safety of dipyridamole testing in 73,806 patiens: The Multicenter Dipyridamole Safety Study. J Nucl Cardiol 1995; 2: 3–17.PubMedGoogle Scholar
  69. 69.
    Miller DD, Younis LT, Chaitman BR, Stratmann H. Diagnostic accuracy of dipyridamole technetium 99m-labeled sestamibi myocardial tomography for detection of coronary artery disease. J Nucl Cardiol 1997; 4: 18–24.PubMedGoogle Scholar
  70. 70.
    He ZX, Iskandrian AS, Gupta NC, Verani MS. Assessing coronary artery disease with dipyridamole technetium-99m-tetrofosmin SPECT: A multicenter trial. J Nucl Med 1997; 38: 44–48.PubMedGoogle Scholar
  71. 71.
    Primeau M, Taillefer R, Essiambre R et al. Tecnetium 99m SESTAMIBI myocardial perfusion imaging: comparison between treadmill, dipyridamole and trans-oesophageal atrial pacing “stress” tests in normal subjects. Eur J Nucl Med 1991; 18: 247–251.PubMedGoogle Scholar
  72. 72.
    Verani MS, Mahmarian JJ, Hixson JB et al. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 1990; 82: 80–87.PubMedGoogle Scholar
  73. 73.
    Lee J, Chae SC, Kyubo L et al. Biokinetics of thallium-201 in normal subjects: Comparison between adenosine, dipyridamole, dobutamine and exercise. J Nucl Med 1994; 35: 535–541.PubMedGoogle Scholar
  74. 74.
    Miyagawa M, Kumano S, Sekiya M et al. Thallium-201 myocardial tomography with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease. J Am Coll Cardiol 1995; 26: 1196–1201.PubMedGoogle Scholar
  75. 75.
    Taillefer R, Amyot R, Turpin S, Lambert R, Pilon C, Jarry M. Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J Nucl Cardiol 1996; 3: 204–211.PubMedGoogle Scholar
  76. 76.
    Nicolai E, Cuocolo A, Pace L et al. Adenosine coronary vasodilation quantitative technetium 99m methoxy isobutyl isonitrile myocardial tomography in the identification and localization of coronary artery disease. J Nucl Cardiol 1996; 3: 9–17.PubMedGoogle Scholar
  77. 77.
    Cuocolo A, Sullo P, Pace L et al. Adenosine coronary vasodilation in coronary artery disease: Technetium-99m tetrofosmin myocardial tomography versus echocardiography. J Nucl Med 1997; 38: 1089–1094.PubMedGoogle Scholar
  78. 78.
    Amanullah AM; Berman DS, Kiat H, Friedman JD. Usefulness of hemodynamic changes during adenosine infusion in predicting the diagnostic accuracy of adenosine technetium-99m sestamibi single-photon emission computed tomography (SPECT). Am J Cardiol 1997; 79: 1319–1322.PubMedGoogle Scholar
  79. 79.
    Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging: Results from the adenoscan multicenter trial registry. J Am Coll Cardiol 1994; 23: 384–389.PubMedGoogle Scholar
  80. 80.
    Brown BG, Josephson MA, Peterson RB et al. Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 1981; 48: 1077–1085.PubMedGoogle Scholar
  81. 81.
    Huikuri HV, Korhonen UR, Airaksinen J et al. Comparison of dipyridamole-handgrip test and bicycle exercise test for thallium tomographic imaging. Am J Cardiol 1988; 61: 264–268.PubMedGoogle Scholar
  82. 82.
    Iskandrian AS, Verani MS, Heo J. Pharmacologic stress testing: Mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1994; 1: 94–111.PubMedGoogle Scholar
  83. 83.
    Laarman GJ (1988) Thallium-201 myocardial scintigraphy after dipyridamole infusion, in Laarman GJ (ed.), Utrecht, pp. 27–117.Google Scholar
  84. 84.
    Rossen JD, Simonetti I, Marcus ML et al. Coronary dilation with standard dose dipyridamole and dipyridamole combined with handgrip. Circulation 1989; 79: 566–572.PubMedGoogle Scholar
  85. 85.
    Walker PR, James MA, Wilde PRH et al. Dipyridamole combined with exercise for thallium-201 myocardial imaging. Br Heart J 1986; 55: 321–329.PubMedGoogle Scholar
  86. 86.
    Laarman GJ, Verzijlbergen FJ, Ascoop CA. Ischemic ST segment changes after dipyridamole infusion. Int J Cardiol 1987; 14: 384–386.PubMedGoogle Scholar
  87. 87.
    Laarman GJ, Bruschke AVG, Verzijlbergen FJ et al. Efficacy of intravenous dipyridamole with exercise in thallium-201 myocardial perfusion scintigraphy. Eur Heart J 1988; 9: 1206–1214.PubMedGoogle Scholar
  88. 88.
    Freidrich L. Myocardial 201TI washout after combined dipyridamole submaximal exercise stress: Reference values from different groups. Eur J Nuel Med 1989; 15: 81–86.Google Scholar
  89. 89.
    Laarman GJ, Bruschke AVG, Verzijlbergen JF et al. Thallium-201 scintigraphy after dipyridamole infusion with low level exercise. II. Quantitative analysis vs visual analysis. Eur Heart J 1990; 11: 162–172.PubMedGoogle Scholar
  90. 90.
    Laarman GJ, Serruys PW, Verzijlbergen JF et al. Thallium-201 scintigraphy after dipyridamole infusion with low-level exercise. Ill. Clinical significance and additional diagnostic value of ST segment depression and angina pectoris during the test. Eur Heart J 1990; 11: 705–711.PubMedGoogle Scholar
  91. 91.
    Casale PN, Guiney TE, Strauss HW et al. Simultaneous low level treadmill exercise and intravenous dipyridamole stress thallium imaging. Am J Cardiol 1988; 62: 799–802.PubMedGoogle Scholar
  92. 92.
    Verziljbergen JF, Vermeersch PHMJ, Laarman GJ et al. Inadequate exercise leads to suboptimal imaging. Thallium-201 myocardial perfusion imaging after dipyridamole combined with low-level exercise unmasks ischemia in symptomatic patients with non-diagnostic thallium-201 scans who exercise submaximally. J Nucl Med 1991; 32: 2071–2078.Google Scholar
  93. 93.
    Stren S, Greenberg D, Come R. Effect of exercise supplementation on Dipyridamole thallium-201 Imaging Quality. J Nucl Med 1991; 32: 1559–1564.Google Scholar
  94. 94.
    Stren S, Greenberg D, Corne R. Quantification of walking exercise improvement of dipiridamole thallium-201 image quality. J Nucl Med 1992; 33: 2061–2066.Google Scholar
  95. 95.
    Ignaszewski AP, McCormick LX, Heslip PG et al. Safety and clinical utility of combined intravenous dipyridamole/symptom-limited exercise stress test with thallium-201 imaging in patients with known or suspected coronary artery disease. J Nucl Med 1993; 34: 2053–2061.PubMedGoogle Scholar
  96. 96.
    Kenneth AB. Exercise-Dipyridamole myocardial perfusion imaging: the circle is now complete. J Nucl Med 1993; 34: 2061–2063.Google Scholar
  97. 97.
    Marten-Jan C, Verziljbergen JF, Van der Wall EE et al. Head-to-head comparison between technetium-99-sestamibi and thallium-201 tomographic imaging for the detection of coronary disease using combined dipyridamole-exercise stress. J Nucl Cardiol 1994; 5: 787–791.Google Scholar
  98. 98.
    Stein L, Burt R, Oppenheim B et al. Symptom-limited arm exercise increases detection of ischemia during dipyridamole tomographic thallium stress testing in patients with coronary artery disease. Am J Cardiol 1995; 75: 568–572.PubMedGoogle Scholar
  99. 99.
    Hurwitz GA, Saddy S, O’Donoghue et al. The VEX-Test for myocardial scintigraphy wiht thallium-201 and sestamibi: effect on abdominal background activity. J Nucl Med 1995; 36: 914–920.PubMedGoogle Scholar
  100. 100.
    Candell-Riera J (1992) Pruebas de esfuerzo y de provocación, in Candell-Riera J and Ortega-Alcalde D (eds.), Cardiología Nuclear, Doyma S.A., Barcelona, pp. 44–64.Google Scholar
  101. 101.
    García-Burillo A, Santana-Boado C, Castell-Conesa J et al. Simultaneous Dipyridamole/Exercise SPET 99mTc-MIBI in the diagnosis of coronary artery disease in patiens with low peak heart rate. J Nucl Cardiol 1995; 10: PI-40 (Abstr).Google Scholar
  102. 102.
    Santana-Boado C, Candell-Riera J, Castell-Conesa J et al. Test simultáneo esfuerzo/dipiridamol asociado a la tomogammagrafia con tecnecio 99mTc-MIBI en el estudio de la enfermedad arterial coronaria. Rev Esp Cardiol 1995; 48: 88 (Abstr).Google Scholar
  103. 103.
    Santana-Boado C, Candell-Riera J, Castell-Conesa J et al. Tomogammagrafia de perfusió amb isonotrils-99mTc i esforç+dipiridamol simultani per a l’estudi de la cardiopatia isquèmica. Rev Catalana Cardiol 1995; 1:30 (Abstr).Google Scholar
  104. 104.
    Van Train KF, Garcia EV, Maddahi J et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomogramas. J Nucl Med 1994; 35: 609618.Google Scholar
  105. 105.
    Van Train KF, Garcia EV, Cooked AJ (1995) Quantitative analysis of SPECT myocardial perfusion, in De Puey EG, Berman DS and Garcia EV(eds.), Cardiac SPECT Imaging, Raven Press, New York, pp. 49–74.Google Scholar
  106. 106.
    Berman DS, Kiat H, Germano G et al. (1995) 99mTc-Sestamibi SPECT in cardiac SPECT imaging, in De Puey EG, Berman DS and Garcia EV (eds.), Cardiac SPECT imaging, Raven Press, New York, pp. 121–146.Google Scholar
  107. 107.
    Fintel DJ, Links JM, Brinker JA et al. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 1989; 13: 600–612.PubMedGoogle Scholar
  108. 108.
    Daou D, Le Guludec D, Faraggi M et al. Nonlimited exercise test combined with high-dose dipyridamole for thallium-201 myocardial single-photon emission computed tomography in coronary artery disease. Am J Cardiol 1995; 76: 753–758.PubMedGoogle Scholar
  109. 109.
    Pennell DJ, Mavrogeni SI, Forbat SM et al. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 1995; 25: 1300–1309.PubMedGoogle Scholar
  110. 110.
    Gibson RS, Beller GA, Gheorghiade M et al. The prevalence and clinical significance of residual myocardial ischemia 2 weeks after uncomplicated non-Q wave infarction: a prospective natural history study. Circulation 1986; 73: 1186–1198.PubMedGoogle Scholar
  111. 111.
    Brown KA, Weiss RM, Clements JP, Wackers FJ. Uselfulness of residual ischemic myocardium within prior infarct zone for identifying patients at high risk late after acute myocardial infarction. Am J Cardiol 1987; 60: 15–19.PubMedGoogle Scholar
  112. 112.
    Candell-Riera J, Permanyer-Miralda G, CastelI J et al. Uncomplicated first myocardial infarction: Strategy for comprehensive prognostic studies. J Am Coll Cardiol 1991; 18: 1207–1219.PubMedGoogle Scholar
  113. 113.
    Gimple LW, Beller GA. Assessing prognosis after acute myocardial infarction in the thrombolytic era. J Nucl Cardiol 1994: 1: 198–209.PubMedGoogle Scholar
  114. 114.
    Olona M, Candell-Riera J, Permanyer-Miralda G et al. Strategies for prognostic assessment of uncomplicated first myocardial infarction: A 5-years follow up study. J Am Coll Cardiol 1995; 25: 815–822.PubMedGoogle Scholar
  115. 115.
    Christian TF, Miller TD, Bailey KR, Gibbons R1. Noninvasive identification of severe coronary artery disease using exercise tomographic thallium-201 imaging. Am J Cardiol 1992; 70: 14–20.PubMedGoogle Scholar
  116. 116.
    Iskandrian AS, Heo J, Lemlek J, Ogilby JD. Identification of high risk patients with left main and three-vessel coronary artery disease using stepwise discriminant analysis of clinical, exercise, and tomographic thallium data. Am Heart J 1993; 125: 221–225.PubMedGoogle Scholar
  117. 117.
    Candell-Riera J (1994) Diagnosis of coronary artery disease, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear Cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp. 187–215.Google Scholar
  118. 118.
    Dunn RF, Freedman B, Bailey IK, Uren R, Kelly DT. Noninvasive prediction of multivessel disease after myocardial infarction. Circulation; 1980; 62: 726–734.PubMedGoogle Scholar
  119. 119.
    Patterson RE, Horowitz SF, Eng C et al. Can noninvasive exercise test criteria identify patients with left main or 3-vessel coronary disease after a first myocardial infarction? Am J Cardiol 1983; 51: 361–372.PubMedGoogle Scholar
  120. 120.
    Abraham RD, Freedman D, Dunn RF et al. Prediction of multivessel coronary artery disease and prognosis early after acute myocardial infarction by exercise electrocardiography and thallium-201 myocardial perfusion scanning. Am J Cardiol 1986; 58: 423–427.PubMedGoogle Scholar
  121. 121.
    Haber HL, Beller GA, Watson DD, Gimple LW. Exercise thallium-201 scintigraphy after thrombolytic therapy with or without angioplasty for acute myocardial infarction. Am J Cardiol 1993; 71: 1257–1261.PubMedGoogle Scholar
  122. 122.
    Candell-Riera J, Santana-Boado C, Castell-Conesa J et al. Dipyridamole administration at the end of an insufficient exercise Tc-99m MIBI SPECT improves detection of multivessel coronary artery disease in patients with previous myocardial infarction. Am J Cardiol 2000; 85: 532–535.PubMedGoogle Scholar
  123. 123.
    ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988; 2: 349–360.Google Scholar
  124. 124.
    Kennedy JW, Ritchie JL, Davis KB, Stadius ML, Maynard C, Fritz J. The Western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction: a 12-month follow-up report. N Engl J Med 1985; 312: 1073–1078.PubMedGoogle Scholar
  125. 125.
    Galvani M, Ottani F, Ferrini D, Sorbello F, Rusticali F. Patency of the infarct-related artery and left ventricular function as the major determinants of survival after Q-wave acute myocardial infarction. Am J Cardiol 1993; 71: 1–7.PubMedGoogle Scholar
  126. 126.
    McCully RB, ElZeky F, Van Der Zwaag R, Ramanathan KB, Sullivan JM. Impact of patency of the left anterior descending coronary artery on long-term survival. Am J Cardiol 1995; 76: 250–254.PubMedGoogle Scholar
  127. 127.
    Lamas GA, Vaughan DE, Pfeffer MA. Left ventricular thrombus formation after first anterior wall acute myocardial infarction. Am J Cardiol 1988; 62: 31–35.PubMedGoogle Scholar
  128. 128.
    Gang ES, Lew AS, Hong M, Wang FZ, Siebert CA, Peter T. Decreased incidence of ventricular late potentials after successful thrombolytic therapy for acute myocardial infarction. N Engl J Med 1989; 321: 712–716.PubMedGoogle Scholar
  129. 129.
    Kim CB, Braunwald E. Potential benefits of late reperfusion of infacted myocardium. The open artery hypothesis. Circulation 1993; 88: 2426–2436.Google Scholar
  130. 130.
    DiCarli MF, Asgarzadie F, Schelbert HR et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995; 92: 3436–3444.Google Scholar
  131. 131.
    Payne RM, Horowitz LD, Mullins CM. Comparison of isometric exercise and angiotensin infusion as stress test for evaluation of left ventricular function. Am J Cardiol 1973; 31: 428–435.PubMedGoogle Scholar
  132. 132.
    Ross J, Braunwald E. The study of left-ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation 1964; 29: 739–749.PubMedGoogle Scholar
  133. 133.
    Watkins J, Slutski R, Tubau J; Karliner J. Scintigraphic study of relation between left ventricular peak systolic pressure and end-systolic volume in patients with coronary artery disease and normal subjects. Br Heart J 1982; 48: 39–47.PubMedGoogle Scholar
  134. 134.
    Ruskin A. Pitressin test of coronary insufficiency. Am Heart J 1947; 36: 569–579.Google Scholar
  135. 135.
    Stein 1. Observations on the action of ergonovine on the coronary circulation and its use in the diagnosis of coronary artery insufficiency. Am Heart J 1949; 37: 36–45.Google Scholar
  136. 136.
    Fuller CM, Raizner AE, Chahine RA et al. Exercise-induced coronary arterial spasm: Angiographie demonstration, documentation of ischemia by myocardial scintigraphy and results of pharmacologic intervention. Am J Cardiol 1980; 46: 500–506.PubMedGoogle Scholar
  137. 137.
    Waters DD, Théroux P, Szlachcic J et al. Ergonovine testing in a Coronary Care Unit. Am J Cardiol 1980; 46: 922–930.PubMedGoogle Scholar
  138. 138.
    Waters DD, Szlachcic J, Théroux P, Dauwe F, Mizgala HF. Ergonovine testing to detect spontaneous remissions of variant angina during long-term treatment with calcium antagonist drugs. Am J Cardiol 1981; 47: 179–184.PubMedGoogle Scholar
  139. 139.
    Waters DD, Théroux P, Slachcic J, Dauwe F. Provocative testing with ergonovine to assess the efficacy of treatment with nifedipine, diltiazem and verapamil in variant angina. Am J Cardiol 1981; 48: 123–130.PubMedGoogle Scholar
  140. 140.
    Ginsburg R, Lamb IH, Bristow MR, Schroeder JS, Harrison DC. Application and safety of outpatient ergonovine testing in accurately detecting coronary spasm in patients with possible variant angina. Am Heart J 1981; 102: 698–702.PubMedGoogle Scholar
  141. 141.
    DiCarlo LA, Botvinick EH, Canhasi BS, Schwartz AS, Chatterjee K. Value of noninvasive assessment of patients with atypical chest pain and suspected coronary spasm using ergonovine infusion and thallium-201 scintigraphy. Am J Cardiol 1984; 54: 744–748.PubMedGoogle Scholar
  142. 142.
    Kronenber MW, Robertson RM, Bom ML, Steckley RA, Robertson D, Friesinger GC. Thallium-201 uptake in variant angina: Probable demonstration of myocardial reactive hyperemia in man. Circulation 1982; 66: 1332–1338.Google Scholar
  143. 143.
    Yano H, Hiasa Y, Aihara T, Nakaya Y, Mori H. Inverted U wave in ergonovine-induced vasospastic angina. Clin Cardiol 1987; 10: 633–639.PubMedGoogle Scholar
  144. 144.
    Kugiyama K, Yasue H, Okumura K et al. Simultaneous multivessel coronary artery spasm demonstrated by quantitative analysis of thallium-201 single photon emission computed tomography. Am J Cardiol 1987; 60: 1009–1014.PubMedGoogle Scholar
  145. 145.
    Combs DT, Martin CM. Evaluation of isoproterenol as a method of stress testing. Am Heart J 1974; 87: 711–715.PubMedGoogle Scholar
  146. 146.
    Schechter E, Wilson MF, Kong YS. Physiologic responses to epinephrine infusion: the basis for a new stress test for coronary artery disease. Am Heart J 1983; 105: 554–560.PubMedGoogle Scholar
  147. 147.
    Wisenberg G, Zawadowski AG, Gebhardt VA et al. Dopamine: its potential for inducing left ventricular dysfunction. J Am Coll Cardiol 1985; 6: 84–92.PubMedGoogle Scholar
  148. 148.
    Mason JR, Palac RT, Freeman ML et al. Thallium scintigraphy during dobutamine infusion: nonexercise-dependent screening test for coronary disease. Am Heart J 1984; 107: 481–485.PubMedGoogle Scholar
  149. 149.
    Coma-Canella I. Sensitivity and specificity of dobutamine-electrocardiography test to detect multivessel disease after acute myocardial infarction. Eur Heart.J 1990; 11: 249–257.PubMedGoogle Scholar
  150. 150.
    Voth E, Baer FM, Theissen P, Schneider CA, Sechtem U, Schicha H. Dobutamine 99mTc-MIBI single-photon emission tomography: non-exercise-dependent detection of haemodynamically significant coronary artery stenoses. Eur J Nucl Med 1994; 21: 537–544.PubMedGoogle Scholar
  151. 151.
    Dakik HA, Vempathy H, Verani MS. Tolerance, hemodynamic changes, and safety of dobutamine stress perfusion imaging. J Nucl Cardiol 1996; 3: 410–414.PubMedGoogle Scholar
  152. 152.
    Elhendy A, Geleijnse ML, Roelandt JRTC et al. Dobutamine-induced hypoperfusion without transient wall motion abnormalities: Less severe ischemia or less severe stress? J Am Coll Cardiol 1996; 27: 323–329.PubMedGoogle Scholar
  153. 153.
    Geleijnse ML, Elhendy A, Van Domburg RT et al. Prognostic significance of systolic blood pressure changes during dobutamine-atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with chest pain and known or suspected coronary artery disease. Am J Cardiol 1997; 79: 1031–1035.PubMedGoogle Scholar
  154. 154.
    Kiat H, Iskandrian AS, Villegas BJ, Starling MR, Berman DS. Arbutamine stress thallium-201 single-photon emission computed tomography using a computerized closed-loop delivery system. Multicenter trial for evaluation of safety and diagnostic accuracy. J Am Coll Cardiol 1995; 26: 1159–1167.PubMedGoogle Scholar
  155. 155.
    Khattar RS, Senior R, Joseph D, Lahiri A. Comparison of arbutamine stress 99mTc-labeled sestamibi single-photon emission computed tomographic imaging and echocardiography for detection of the extent and severity of coronary artery disease and inducible ischemia. J Nucl Cardiol 1997; 4: 211–216.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Jaume Candell-Riera
  • Cesar Santana-Boado

There are no affiliations available

Personalised recommendations